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In this department the MONTHLY presents easily stated unsolved problems dealing with notions ordinarily
encountered in undergraduate mathematics. Each problem should be accompanied by relevant references (if any
are known to the author) and by a brief description of known partial results. Manuscripts should be sent to
Richard Guy, Department of Mathematics and Statistics, The University of Calgary, Calgary, Alberta, Canada
T2N INA4.
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It is well known that the plane can be tiled by equilateral triangles, by squares, or by regular
hexagons, but that there exists no such tiling by regular pentagons. More generally it is not hard
to see that the plane cannot be tiled by congruent figures each with 5-fold symmetry, that is,
admitting as symmetries rotations about a point through angles of 72°, 144°, 216° and 288°.
However, if one does not insist that the tiles are congruent, and one allows a variety of different
shapes and sizes, then the question of tiling by tiles with 5-fold symmetry becomes much more
interesting and leads to several open problems.

We recall that one of the basic results in geometric crystallography is the crystallographic
restriction, which asserts that in the Euclidean plane no figure with a discrete symmetry group can
have more than one center of five-fold rotational symmetry. Similar assertions can be made about
k-fold rotations with k = 7. These facts lead to the well-known result that if a planar figure admits
translational symmetries but does not admit arbitrarily short translations as symmetries, then the
only possible rotational symmetries are k-fold rotations with k = 2, 3, 4 or 6 (see, for example,
Buerger [3, p. 33], Coxeter [5, Sect. 4.5, Fejes Toth [9, Sect. 1.1.4]).

However, the crystallographic restriction does not prove the impossibility of a tiling in which
each individual tile has 5-fold symmetry. Fruitless efforts by mathematicians to construct such
tilings go back at least to Kepler [11]. Fig. 1 shows some of Kepler’s attempts; he notes that in
each case a tiling can be obtained only at the price of introducing “monsters” (such as the “fused
decagons” in Fig. 1a) which do not have 5-fold symmetry. Explanations of Kepler’s tilings and
variants of them have been discussed by several authors (Caspar [4, p. 374], Bindel [1], Eberhart
[7], Grinbaum & Shephard [10, Sect. 2.5]). Even earlier attempts at constructing tilings with tiles
that have 5-fold symmetry are discernible in Islamic art (see, for example, Bourgoin [2], Critchlow
[6], Wade [14], El-Said & Parman [8]).

It is therefore somewhat surprising to find that such tilings can easily be constructed by a
simple inductive procedure. In the example indicated in Fig. 2, the tiles used are congruent either
to the pentagon A shown in Fig. 2a, or to the nonconvex 20-sided polygon B shown in Fig. 2b, or
to a polygon 3”B similar to B in ratio 3", where n = 1,2,3,... . The construction of the tiling,
indicated in Fig. 2c, is based on the fact that five copies of A yield with B a pentagon 3A similar
to A in ratio 3; five of these and 3B yield a pentagon 3%A, etc.

*Research supported by the National Science Foundation Grant MCS77-01629 A0l and a Guggenheim
Fellowship.
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F1G. 1. Some of the patches devised by Kepler in 1619 in attempts to tile the plane by tiles with 5-fold symmetry.

The tiles in this example are not uniformly bounded in diameter. It seems that the answer to
the question changes if the diameters of the tiles cannot grow without bounds. To make this
problem precise from now on we restrict attention to tilings in which the tiles are closed
topological disks of diameter at most 1, covering the plane without gaps or overlaps of their
interiors. We conjecture that the Euclidean plane admits no tiling in which each tile has five-fold
symmetry. If true, this conjecture is precariously balanced against various indications that seem to
lend support to the opposite view. For example, tilings by congruent regular pentagons are
possible on the sphere, in the elliptic plane and in the hyperbolic plane. The plane can be tiled by
affinely regular pentagons, all mutually similar and of only two sizes (see Fig. 3). Many kinds of
equilateral convex pentagons—some very close in shape to regular pentagons—can be used to tile
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FIG. 2. The construction of a tiling (c) in which each tile is congruent either to the regular pentagon in (a), or to the
20-sided polygon in (b), or to an enlarged version of this polygon.

FI1G. 3. A tiling of the plane by affinely regular pentagons, all mutually similar and of only two sizes.

the plane by congruent copies (see the surveys in Schattschneider [12], [13]). Probably even more
telling are examples like the one in Fig. 4, which appears to show a tiling in which each tile is a
regular pentagon. Actually, the pentagons in Fig. 4 form a Cantor-type set, and do not cover the
plane; hence they do not form a tiling in the sense considered here.

Large regions of the plane can be covered, in many ways, by patches of tiles, in which each tile
has 5-fold symmetry or even reflective 5-fold symmetry. In order to compare in a meaningful way
the sizes of such patches, various measures can be used. Possibly the most appropriate one is the
ratio p of the diameter of the largest circular disk covered by the patch to the diameter of the
smallest circular disk that can cover each of the tiles in the patch. By adding around Kepler’s
patch in Fig. 1b ten of the larger pentagons and fifteen of the smaller ones, a patch with p ~ 3.1 is

[Continued on p. 583.]
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F1G. 4. A tiling which appears to consist of regular pentagons (the triangular spaces being “filled” by smaller and
smaller pentagons). However, it can be shown that the union of the pentagons is a set of Cantor type, which does not
cover the plane.

obtained. Similarly, the patch in Fig. lc can be extended (by adding ten pentagons) to a patch
with p ~ 2.6, while deleting from Fig. 1a the tiles which do not have 5-fold symmetry leads to a
patch with p ~ 3.9

The largest known patch made up of tiles which are regular pentagons, decagons, and

pentagrams is shown in Fig. 5. Here p = /(83 + 37/5)/8 ~ 4.6. Patches with larger values of p
can be constructed using the process of “decomposition”—a method which has proved useful in
other tiling problems (see, for example, [10, Chapter 10]). This may be explained as follows. Let
the edge-length of the small pentagons in Fig. 5 be denoted by s, and let each vertex of this patch
be the center of a regular decagon with edge-length s/73, where 7 = (1 + V5) is the golden
section ratio. Then the parts of the tiles outside these decagons can be partitioned into smaller
tiles, each with 5-fold symmetry. In Fig. 6 we show this process applied to (one tenth of) the patch
of Fig. 5. To obtain the whole patch we have to mirror the sector shown in the dotted lines and
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FiG. 5. A patch with the largest known p ~ 4.55157... among patches consisting of regular pentagons, decagons
and pentagrams. The largest circle covered by the patch passes through the point marked by an asterisk and through
its nine homologues.

their images. The original (larger) tiles are indicated by thin lines, and the tiles obtained by the
decomposition process are shown by thicker lines.

Decomposition increases p for two reasons: the diameters of the tiles are decreased and also
the patch can be extended a little using the smaller tiles. The patch in Fig. 6 has p ~ 8.6.

Repeating the process of decomposition leads to patches with larger values of p; in this way we
can obtain patches with up to p ~ 13. Using other starting patches, we can get as high as p ~ 38.
We do not know whether this is anywhere near the maximum; indeed, we cannot even prove the
existence of a value w < oo such that p < w for each patch of the kind under consideration. We
conjecture that no such w exists.

Similar problems can be raised concerning tilings and patches in which each tile has k-fold
symmetry for some k = 7, or for any combination of such tiles and tiles with 5-fold symmetry.
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FIG. 6. A patch with p ~ 8.6 obtained by “decomposition” from the tiling in Fig. 5 and addition of some tiles
around the boundary.
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MISCELLANEA

83. Mathematics, like Dialectics, is an organ of the inner, higher mind; in practice, it is an art
like eloquence. In both, nothing counts but the form; the content is irrelevant.

—J. W. v. Goethe, Maximen und Reflexionen, no. 605.



