Section 7.4
 Generating Functions

Generating functions are useful for manipulating sequences and therefore for solving counting problems.

Definition: Let $\mathrm{S}=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\}$ be an (infinite) sequence of real numbers. Then the generating function $G(x)$, of S is the series

$$
G(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

Note: For students of calculus -
There is no issue of convergence here. The variable x and its powers allow us to assign a position to the numbers a_{k}. We will use the closed form expressions which represent G if the series converges but for symbol manipulation purposes only.

Examples:

$$
\cdot \text { Let } S=\{1,1,1,1, \ldots\} . \text { Then }
$$

$$
G(x)=1+x+x^{2}+x^{3}+\ldots+x^{k}+\ldots=\sum_{k=0}^{\infty} x^{k}
$$

- Let $S=\{0,1,2,3,4,5, \ldots\}$. Then

$$
G(x)=\sum_{k=0}^{\infty} k x^{k}
$$

- If S is the finite sequence $\{1,1,1\}$ then we pad S with an infinite number of zeros $\{1,1,1,0,0, \ldots\}$ and we have

$$
G(x)=1+x+x^{2}=\frac{\left(1-x^{3}\right)}{(1-x)},
$$

a closed form for G.

The Binomial Theorem Revisited

For producing expressions for $\mathrm{G}(\mathrm{x})$, recall the binomial theorem:

$$
\begin{aligned}
& (a+b)^{n}=\frac{a^{n}}{0!}+\frac{n a^{n-1} b}{1!}+\frac{n(n-1) a^{n-2} b^{2}}{2!}+\ldots \\
& +\frac{n(n-1) \ldots(n-k+1) a^{n-k} b^{k}}{k!}+\ldots+\frac{n(n-1) \ldots(n-n+1) a^{n-n} b^{n}}{n!}
\end{aligned}
$$

which terminates when n is an integer to produce a finite sum.

However, the formula can also be extended to include the case when n is not an integer:

- the sum does not terminate
- useful for producing expressions for generating functions.

Example:

We apply the procedure to the expression

$$
\frac{1}{\left(1-3 x^{2}\right)}
$$

where we let $a=1, b=\left(-3 x^{2}\right)$, and $n=-1$:

$$
\begin{aligned}
& \frac{1}{\left(1-3 x^{2}\right)}=\left(1-3 x^{2}\right)^{-1}=\frac{1^{-1}}{0!}+\frac{(-1) 1^{-2}\left(-3 x^{2}\right)}{1!}+ \\
& \frac{(-1)(-2) 1^{-3}\left(-3 x^{2}\right)^{2}}{2!}+\frac{(-1)(-2)(-3) 1^{-4}\left(-3 x^{2}\right)^{3}}{3!}+\ldots+\left(3 x^{2}\right)^{k}+\ldots
\end{aligned}
$$

Since there are no odd powers of x , the expression is the generating function for the sequence

$$
S=\left\{1,0,3,0,3^{2}, 0,3^{3}, 0, \ldots\right\}
$$

Manipulation of Generating Functions

Let

$$
F(x)=\sum_{k=0}^{\infty} a_{k} x^{k} \text { and } G(x)=\sum_{k=0}^{\infty} b_{k} x^{k} .
$$

Then

- Sum

$$
F(x)+G(x)=\sum_{k=0}^{\infty}\left(a_{k}+b_{k}\right) x^{k}
$$

- Product

$$
F(x) G(x)=\sum_{k=0}^{\infty}\left(\sum_{j=0}^{k} a_{j} b_{k-j}\right) x^{k}
$$

To derive the expression we multiply each term of F by all terms of G and place the coefficients of like powers of x in the same column:

$$
\left.\begin{array}{cccc}
\left(a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+\ldots\right)\left(b_{0}+b_{1} x+b_{2} x^{2}+\ldots\right) \\
x^{0} & x^{1} & x^{2} & \mathrm{x}^{3} \ldots \\
a_{0} b_{0} & a_{0} b_{1} & a_{0} b_{2} & a_{0} b_{3} \\
& a_{1} b_{0} & a_{1} b_{1} & a_{1} b_{2} \\
& & a_{2} b_{0} & a_{2} b_{1} \\
a_{3} b_{0}
\end{array}\right] \begin{array}{llll}
\\
& & & \sum_{j=0}^{2} a_{j} b_{0-j} \\
\sum_{j=0}^{2} a_{j} b_{1-j} & \sum_{j=0}^{2} a_{j} b_{2-j} & \sum_{j=0}^{3} b_{3-j} \ldots
\end{array}
$$

Example:

A expression for the generating function of the sequence S
$=\{1,1,1,1,1,1, \ldots\}$ is

$$
\frac{1}{(1-x)}
$$

Hence, the expression

$$
\frac{1}{(1-x)^{2}}
$$

is the generating function for the sequence

$$
S=\{1,2,3,4, \ldots, k+1, \ldots\} .
$$

Counting with Generating Functions

Recall that

$$
x^{a} x^{b}=x^{a+b}
$$

and therefore if

$$
\mathrm{S}=\left\{a_{0}, a_{1}, a_{2}, a_{3}, \ldots\right\} \text { and } \mathrm{T}=\left\{b_{0}, b_{1}, b_{2}, b_{3}, \ldots\right\}
$$

there will be a contribution of $a_{m} b_{n}$ to the $\mathrm{m}+\mathrm{n}$ power of x in the product of the generating functions for S and T .

Example:

Suppose we wish to count the integer solutions to $\mathrm{a}+\mathrm{b}=$ 10 but a and b are constrained by

$$
1 \leq \mathrm{a} \leq 6 \text { and } 3 \leq \mathrm{b} \leq 9
$$

There are 6 possible solutions:

$$
\begin{aligned}
& 1+9 \\
& 2+8 \\
& 3+7 \\
& 4+6 \\
& 5+5 \\
& 6+4
\end{aligned}
$$

where the first number is a and the second is b.
If we construct the sequences

$$
\mathrm{A}=\{0,1,1,1,1,1,1,0,0, \ldots\}
$$

where $a_{k}=1$ if k is a possible value of a and

$$
\mathrm{B}=\{0,0,0,0,1,1,1,1,1,1,0,0, \ldots\}
$$

where $b_{k}=1$ if k is a possible value of b then the product of the two generating functions for A and B will have the total possible solutions to

$$
a+b=10
$$

as a coefficient of x^{10}

$$
\begin{gathered}
\sum_{k=0}^{10} a_{k} b_{10-k} \\
=0+1+1+1+1+1+1+0+0+0+0=6
\end{gathered}
$$

Solving Recurrence Relations

First some observations:
If

$$
G(x)=\sum_{k=0}^{\infty} a_{k} x^{k}
$$

then

$$
x G(x)=\sum_{k=0}^{\infty} a_{k} x^{k+1}=\sum_{k=1}^{\infty} a_{k-1} x^{k}
$$

and

$$
\begin{gathered}
x^{2} G(x)=\sum_{k=0}^{\infty} a_{k} x^{k+2}=\sum_{k=2}^{\infty} a_{k-2} x^{k} \\
\text { etc. }
\end{gathered}
$$

Example:
Solve the nonhomogeneous recurrence system

$$
a_{n}=3 a_{n-2}+1, a_{0}=a_{1}=1 .
$$

Solution:

Multiply each term on both sides of the equation by x^{n} and sum from 2 to infinity to produce:

$$
\sum_{n=2}^{\infty} a_{n} x^{n}=3 \sum_{n=2}^{\infty} a_{n-2} x^{n}+\sum_{n=2}^{\infty} x^{n}
$$

Now adding $a_{0}+a_{1} x$ to both sides and using the initial conditions we have

$$
a_{0}+a_{1} x+\sum_{n=2}^{\infty} a_{n} x^{n}=3 \sum_{n=2}^{\infty} a_{n-2} x^{n}+\sum_{n=2}^{\infty} x^{n}+1+x
$$

which gives

$$
\sum_{n=0}^{\infty} a_{n} x^{n}=3 \sum_{n=2}^{\infty} a_{n-2} x^{n}+\sum_{n=0}^{\infty} x^{n}
$$

or

$$
G(x)-3 x^{2} G(x)=\frac{1}{(1-x)}
$$

or

$$
G(x)=\frac{1}{\left(1-3 x^{2}\right)} \frac{1}{(1-x)}
$$

We leave it to the student to find the terms of the sequence represented by G.

