Week 2 Lectures 3 – 4. Design and analysis: examples.

The Maximum Subsequence Sum Problem: 2.4.3

Solution 1:
Generate all segments [i…j];

Check the weight of each segment;

Keep the largest weight;

Analysis:
There are
[image: image1.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 segments.

The average length of a segment is n/2.

A segment of length k requires k – 1 addition to compute its weight.

The number of additions is about (n/2 – 1)*
[image: image2.wmf]÷

÷

ø

ö

ç

ç

è

æ

2

n

 = O(n3).

More precisely:

The segment [i…j] requires (j – i – 1) additions.

The number of additions is:

[image: image3.wmf]å

å

=

=

-

-

n

i

n

j

i

j

1

1

)

1

(

 = O(n3).

Solution 2:
for k = 0 to n do:

Find largest segment that starts at k;

Keep largest segment;

Analysis:
To find the largest segment that starts at k need n – k – 1 additions.

Total: (n-1) + (n-2) + … + 1 = O(n2).

Solution 3:
“Divide and conquer”.

Partition the array into two halves;

Find the largest segment in the left half;

Find the largest segment in the right half;

Find the largest segment that spans the middle;

Select the largest segment;

Analysis:
T(n) = 2T(n/2) + n ==(T(n) = O(n.log n)

Solution 4:
int maxSum =0, thisSum = 0;

for (int j = 0; j < a.length; j++) {

 thisSum += a[j];

 if (thisSum > maxSum)

maxSum = thisSum;

 else if(thisSum < 0) thisSum = 0;

} return maxSum;

Analysis:
The for loop executes n times.

Each time through the loop we execute one addition and one comparison.

Running time O(n).

Linear code: Prove correctness. (Induction ?)

Codes for solving the Maximum Subsequence Sum Problem (section 2.4.3) are available at http://www.cs.fiu.edu/~weiss/dsj2/code/code.html
Conclusion: a complicated code does not necessarily lead to the most efficient algorithm.

Authors are human!

Problem 2.26 page 52-53.
Find a majority element in an array.

Algorithm suggested in the book:

i. Input: array A;

ii. Form a second array B;

iii. If A1 = A2 add it to B;

iv. If A3 = A4 add it to B;

v. Etc.

vi. Find majority element in B;

As is, this cannot be correct. Consider two inputs: [1, 1, 2, 3] and [1, 1, 1, 3]. The first input does not have a majority element while the second does. Yet both of them will produce the same array B!

Correction attempt: in line iv. compare every pair of adjacent elements.

Still not correct! [1, 1, 2, 3] and [1, 1, 2, 1] will produce the same B!

Two-three problem:

static void two3 (long n) {

 if (n ==1)

 System.out.println(”DONE!!!”);

 else

 n %2 ==0? two3(n/2) : two3(n*3 + 1);

}

More Analysis

Recall: (log2 n(= k (((n/2)/2)/2 …)/2 (1

Binary search:

 T(n) = T(n/2) + 1

Euclid’s algorithm

static long GCD(long m, long n)

{return n*m ==0 ? n+m : GCD(n, m % n)

Trace the “decline” of n.

Lemma: m > n then (m mod n) < m/2.

Proof:

· If n > m/2 then m = n + (m – n)

· m – n = m mod n < m/2

· If n <= m/2 m = n*q + r

· r < n

· r = m mod n.

Conclusion: after two steps of executing GCD(m,n) the code calls GCD(a,b) and b < n/2. This means that after each pair of steps the “size” of the input is halved. So the number of pairs is O(log n) and so is the number of steps.

2.13 – 2.14: Horner’s method:

evaluating polynomials. a[n+1] is the array of coefficients.

(book code):
poly = 0;

for (i = n; i >= 0; i++)

 poly = x*poly + a[i];

Analysis: O(n).

Samples to be discussed in class: 2.20; 2.27; 2.28;

Read: Chapter 3.

_1064143922.unknown

_1064143933.unknown

_1064143656.unknown

