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Branko Grünbaum: 
 

Simplicial arrangements revisited. 

 
 
 Abstract 

 
 In connection with the publication of the catalogue [7] of known simplicial ar-
rangements of lines in the real projective plane, and the note [8] about small simplicial 
arrangements of pseudolines, several developments of these topics deserve to be men-
tioned. The present paper puts these results in perspective, and provides appropriate illus-
trations. 
 
 1. Simplicial arrangements of pseudolines 

 
 Very significant new results on simplicial arrangements of pseudolines are con-
tained in the publications [1] by L. W. Berman and [3] by M. Cuntz.  We recall that an 
arrangement of pseudolines is a family of simple curves in the real projective plane such 
that each differs from a straight line in a finite part only, and every two have a single 
point in common at which they cross transversally. Throughout, we model or interpret the 
real projective plane as the extended Euclidean plane, with added points “at infinity” and 
the line “at infinity” (indicated by ∞ if included in a diagram) consisting of all the points 
at infinity. 

 Developing an idea of Eppstein [4], Berman described a method of construction 
of simplicial arrangements of pseudolines that has a very general applicability; moreover, 
it is very easily adapted for investigation of linear simplicial arrangements (that is, con-
sisting of straight lines). To explain this approach, we start with the case of linear ar-
rangements. (It needs to be noted that our explanation differs somewhat from Berman’s; 
we shall return to this later on.) Starting with the lines of mirror symmetry of a regular k-
gon (k ≥ 2) centered at the origin, we select one of the 2k wedges (angular regions) de-
termined by a pair of adjacent rays formed by these k lines. Considering these rays as 
mirrors, we shine a (laser) ray (or several such rays) into the wedge, and let it (them) re-
flect on the two mirrors according to the laws of reflection; this generates a beam (or sev-
eral beams). As is easily seen be elementary considerations, the laser ray will reflect only 
a finite number of times, and the final fate of each beam will be one of the following: 

(i) The final segment will be perpendicular to one of the reflecting rays; this 
includes what can be considered a limiting case, where the starting laser ray is aimed at 
the origin; in particular, it includes the case where the mirrors are part of the arrange-
ment. 
 (ii) The last part of the beam will be a ray shooting out of the wedge. In this 
case there are two distinct portions of the beam –– the incoming part and the outgoing 
part. Each of these parts is simple (has no selfintersections) but the two parts may have 
intersections. Such beams are called two-ended. 
 
 In case of pseudoline arrangements, the same conditions are assumed, except that: 
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 The reflections on the mirrors do not follow rules of optics but are simply end-
points of pairs of segments or rays; 

 Each segment or ray may be a pseudosegment or pseudoray (the purple line in 
Figure 1 is an example); 

 The orthogonality in (i) is waived, and each of the two parts in (ii) is assumed to 
be simple. See examples in Figures 1, 2, 3 and 4. 

 In any case, if the beam(s) satisfy some additional conditions, as detailed in [1], 
repeated reflection in the 2k rays yields a linear or pseudoline simplicial arrangement. We 
call these kaleido arrangements, to distinguish them from more general simplicial ar-
rangements. Examples of the latter kind (non-kaleido) are A(14,3), A(16,7), and others, 
in the notation of [7], as well as the linear arrangement in Figure 7. 
 

 

Figure 1. The simplicial pseudoline arrangement B1(15) (adapted from [7]) is a kaleido 
arrangement with k = 2 and seven beams, one of which (red) is two-ended. The blue 
beam and the black ones are aimed at the origin, the purple one is a pseudoray, and the 
green and yellow ones are rays ending at mirrors. The mirrors are heavily drawn black 
lines. 
 

 
Figure 2.  A kaleido simplicial arrangement B2(16) of 16 pseudolines, with k = 3 and 
with five beams, one of which (red) is two-ended. 
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Figure 3. A kaleido simplicial pseudoline arrangement B(22), with k = 3 and with six 
beams, two of which are two-ended. It is the arrangement shown in Figure 22 of [1]. 

 

Figure 4. The simplicial linear kaleido arrangement A(25,5), in the notation of [7], with  
k = 8 and with four beams (two black, one red and one green). It is isomorphic to the sec-
ond (pseudoline) arrangement in Figure 11 of [1]. Without the line at infinity it is the ar-
rangement A(24,2) of [6]. With the eight additional pseudolines (only one shown, in 
gray) generated by the gray beam it is a simplicial kaleido arrangement with 33 pseu-
dolines. 



 Page 4 

 It should be noted that the mirrors of a kaleido arrangement need not be parts of 
lines of the arrangement. Examples of kaleido arrangements with such “virtual” mirrors 
are shown in Figures 5 and 6. 

!

 
 

Figure 5. The simplicial linear kaleido arrangement A(7,1), with k = 3 and two beams, 
reflected on two virtual mirrors. 

 

 
 

Figure 6. The simplicial linear kaleido arrangement A(15,2), with k = 4 and three beams, 
one of which is a mirror; one mirror is a virtual mirror. 

 
 
 
 In Berman’s paper [1], only beams satisfying (i) or its modification for pseu-
dolines are accepted. Detailed discussion of the conditions that lead to linear simplicial 
arrangements (and of their pseudoline analogs) is presented in [1] for up to three beams 
other than the mirrors. It may be assumed that analogous investigations may determine 
conditions under which beams as defined here lead to simplicial arrangements, but I have 
not determined these conditions.  
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 The main reason for introducing condition (ii) in the definition of kaleido ar-
rangements is that it leads to the following result: 
 
 Theorem. Each simplicial arrangement, with k-fold dihedral symmetry such that 
all mirrors are lines of the arrangement, is a kaleido arrangement. 
 
 The theorem is valid equally for linear arrangements and for pseudoline arrange-
ments. 
 
 Proof. Let all the beams be marked as far as possible, starting with the incoming 
rays; the claim is that there are no unmarked segments (of straight or pseudolines) or 
rays. If any such segment were present, its continuation by reflection in the mirrors would 
have to close on itself, which is impossible. 
 

In [3], Cuntz first enumerates simplicial arrangements of at most 27 pseudolines, 
and then investigates their stretchability, that is, the isomorphism to linear arrangements. 
The bound 27 is due to limitations of the computing power available, but even with this 
bound several notable results are obtained and several conjectures of the present writer 
are resolved. 
 
 The enumeration of simplicial arrangements of pseudolines in [3] shows that all 
simplicial arrangements with at most 14 pseudolines are stretchable, thus confirming a 
conjecture made in [8]. The computer-assisted enumeration in [3] uses “wiring diagrams” 
introduced Goodman in [5], and elaborated in Goodman and Pollack [6] and other publi-
cations, together with innovative arguments to reduce the computational effort. The re-
sults, in particular, disprove another conjecture in [8]: Namely, that there is a single un-
stretchable simplicial arrangement of 15 pseudolines and four of 16 pseudolines. In the 
paper [3] Cuntz establishes that there are precisely two such arrangements with 15, and 
precisely seven with 16 pseudolines. The second 15-pseudoline arrangement is shown in 
Figures 7 and 8 in two forms. Figure 7 shows a “wiring diagram” of this pseudoline ar-
rangement, modified from Figure 2 of [3]. The presentation in Figure 8 exhibits the 3-
fold rotational symmetry of this arrangement in the extended Euclidean model of the real 
projective plane. The colors of the lines, and the labels, establish the isomorphism be-
tween the two diagrams in Figures 7 and 8. As no pseudolines in this example are 
mapped onto themselves by reflection, this is not a kaleido arrangement. 
 
 
 
 2. Simplicial arrangements of straight lines 

 

 Another result of [3] is the discovery of four new simplicial arrangements of 
(straight) lines. A short review of the historical background seems appropriate to explain 
the significance of Cuntz’s results. 
 
 The first introduction of the concept of simplicial arrangements of lines occurred 
in a paper by Melchior [11] in 1941, but the paper did not seem to have any immediate  
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Figure 7. A wiring diagram of the new simplicial arrangement B2(15) of 15 pseudolines 
found by Cuntz. Adapted from Figure 2 of [3]. 
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Figure 8. A presentation of the simplicial arrangement B2(15) of 15 pseudolines in the 
extended Euclidean model of the real projective plane. The colors and labels of the pseu-
dolines correspond to those in Figure 7. 
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effect. Close to thirty years later, the fact that Melchior found only few such arrange-
ments piqued my curiosity. Over time, I found that there are three infinite families of 
simplicial arrangements, and a large number of nonsystematic, “sporadic” ones. Details 
were published in [9] in 1971; however, the presentation there was very concise, and not 
“user friendly”. More recently, a more detailed version was published [7]. Ninety spo-
radic arrangements were shown in [9], and this number remained unchanged in [7] –– 
although one arrangement was a duplicate and was deleted, and a new one was found. 
The presentation in [7] seems to have attracted more attention; one of the results was the 
paper by Cuntz [3]. 
 
 In this paper Cuntz disproves the present author’s longstanding conjecture, first 
stated in [9] in 1971 and repeated in other publications, notably in [7], that the list of 90 
sporadic simplicial arrangements is complete. Cuntz found that the catalog [7] is com-
plete regarding simplicial arrangements with up to 27 lines, except for one missing ar-
rangement for each of 22, 23, 24, and 25 lines. These arrangements, missed in [7], form a 
“family” in the sense that the one with the largest number of lines (25) leads to the other 
three by omitting 1, 2, or 3 lines. A version of this arrangement, denoted A(25, 8) by 
Cuntz, is shown in Figure 9. This presentation is geometrically more symmetric than the 
one in Figure 1 of [3]. The lines that may be omitted are shown heavily drawn, and it is 
obvious that they play the same role in the arrangement. Therefore only a single addi-
tional arrangement arises on omitting 1, 2, or 3 of them.  

 As a consequence, there are now 94 known sporadic simplicial arrangements of 
lines. As a further consequence, it is now more open to question whether there exist addi-
tional such arrangements with 28 or more lines? An inspection of the twenty known such 
arrangements (depicted in [7]) shows clearly that the experimental discovery becomes 
very complicated with this range of the number of lines. Hence there is a real possibility 
that some of these arrangements have not been found so far. It would seem very desirable 
–– but challenging –– to find ways of ascertaining the completeness of the list in [7] of 
such arrangements augmented by the four Cuntz arrangements, or the lack of it. 
 

 
3. Additional remarks on simplicial arrangement of lines and pseudolines 

 
 It is not clear how to decide from the combinatorial (or topological) description of 
a simplicial arrangement of pseudolines what is the minimal number of non-straight ones. 
Nor is it obvious how that number depends on the order of the automorphism group of 
the arrangement. Another question is whether it is possible to have different numbers of 
beams for the same arrangement; this possibility arises since the reflections are not 
strictly optical ones. 
 
 A still different question is what are the restrictions on k, the number of single-
ended, and the number of two-ended beams. In particular, for a given number d of two-
ended beams, what is the minimal number s of single-ended ones – for linear arrange-
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ments, and for pseudoline ones. Figure 3 shows that with k = 3, and d = 2, as few as b = 4 
single-ended beams are possible; the new arrangement A(22,5) shows the same for a lin-
ear arrangement. As another example we have in Figure 11 a linear arrangement A(15,1) 
with three two-ended beams and two single-ended beams. 
 
 As shown by examples, a (linear) kaleido arrangement may have isomorphic re-
alizations with different geometric symmetry groups. The arrangement A(6,1) shown in 
Figure 12 provides an example. 
 
 
 

 
Figure 9. A version of the linear simplicial arrangement denoted A(25,8) by Cuntz [3]. 
Any number of the three heavily drawn lines can be deleted, resulting in the simplicial 
arrangements labeled A(22,5), A(23,2), and A(24,4) in [3]. 
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Figure 10. Cuntz’s A(25,8) simplicial arrangement of lines is a kaleido arrangement with  
k = 3; it has two two-ended beams (red and green), and five other beams. 
 

!

 

Figure 11. The linear simplicial kaleido arrangement A(15,1) with k = 2 has five beams, 
three of which are two-ended. 
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Figure 12. Isomorphic realizations with different symmetries. 
 

 

3. Additional remarks on simplicial arrangement of lines and pseudolines 

 
 While it is not hard to show that the simplicial pseudoline arrangements shown in 
the above figures are not stretchable, it is not clear to what extent they fail to be stretch-
able. More precisely, at least how many non-straight pseudolines have to be used in every 
diagram of these arrangements? In Figure 1 there are two such pseudolines, in Figure 2 
there are three, and in Figure 6 there are six. In all these cases this seems to be the mini-
mal number of non-straight pseudolines. The four non-stretchable simplicial arrange-
ments of 16 pseudolines described in Figures 5 and 6 of [8] have at least 2, 3, 3, resp. 1 
non-straight pseudolines. According to a private communication by Prof. Cuntz, the four 
non-stretchable simplicial arrangements of 16 pseudolines described in Figures 5 and 6 of 
[7] have 2, 1, 1, resp. 1 non-straight pseudolines; also, the three new non-stretchable ar-
rangements of 16 pseudolines mentioned in [3] but not described there, have each at least 
2 non-straight pseudolines. 
 
 It is not clear how to decide from the combinatorial (or topological) description of 
a simplicial arrangement of pseudolines what is the minimal number of non-straight ones. 
Nor is it obvious how that number depends on the order of the automorphism group of 
the arrangement. 
 
 The pseudoline arrangement B2(15) of 15 pseudolines is listed in Table 3 of 2] as 
having 6-fold cyclic symmetry. This seems hard to reconcile with Figure 8 above. 
 
 There is a regrettable error in the catalog [7]. The arrangement shown there on 
page 14 and labeled A(16,7) is, in fact, isomorphic with the arrangement A(16,5) shown 
just above it. A correct diagram of A(16,7) is shown in Figure 13. 
 
 Simplicial arrangements of (straight) lines lead to a number of other problems.  
Not only is the question of the completeness of the list in [6], as augmented in [3], debat-
able –– but it is conceivable that there are infinitely many arrangements missing. In fact, 
there seems to be no known family of lines in the plane that could not be imbedded into a 
simplicial arrangement of lines, or at least of pseudolines. 
 
 
 



 Page 11 

 

 Figure 11.  A correct diagram of the simplicial arrangement A(16,7); the diagram 
shown in [7] and labeled  A(16,7) is not correct. 
 
 
 
 Even the belief that there are no additional infinite families of simplicial arrange-
ments of lines beyond the three families described in [9] and [7], has no credible support-
ing evidence. On the other hand, it could be argued that the available facts concerning 
simplicial pseudoline arrangements make the existence of additional infinite families of 
straight-line simplicial arrangements more believable. 
 
 Here are these facts. Already in [10, p.51] it is mentioned that there are at least 
seven infinite families of simplicial pseudoline arrangements. But this was rendered in-
significant through the work of Berman. In [1] Berman described constructions of many 
infinite families of simplicial arrangements of pseudolines, base on reflecting kaleido-
scopically suitable zigzags in an angle. It may well be that some of these lead to linear 
arrangements. 
 
 The difference between the definition of kaleido arrangements used here, and the 
one proposed by Berman is not as large as might be thought. In most cases one could re-
place one two-ended beam by two single-ended ones by accepting that the end-segment 
does not meet the mirror perpendicularly. On the other hand, our definition of kaleido 
arrangements could be extended to arrangements that are not simplicial. There seems to 
be no interesting information available about such more general arrangements, but the 
concept may well be worth investigating.  
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 Finally, another result of Cuntz and collaborators should be mentioned. They in-
vestigated a particular class of linear simplicial arrangements called “crystallographic ar-
rangements”; their definition is too involved to be repeated here and readers are referred 
to [2] and the references given there. In contrast to the uncertainties discussed above, this 
class has the notable property that its members have been completely determined and 
classified. 
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