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This is an update of the note [2].  To make the present remarks
selfcontained, I'll briefly recall the topic and the problems from [2].

The perpendicular bisectors of the sides of a quadrilateral  Q
form in general another quadrilateral  Q1, the vertices of which are the
intersections of the bisectors of adjacent sides of  Q.  We shall call this
mapping of quadrangles to quadrangles the bisector construction and
denote it by  β;  thus  Q1 = β(Q).  In 1953 J. Langr [3] asked:

(i) Show that   Q2 = β(Q1) = β(β(Q))  is similar to  Q; and
(ii) Find the ratio of similarity of  Q2  and  Q.

 At the time [2] was written the only solutions of (i)  I was aware
of were obtained by using computers in various ways; see [2] for details
and references (as well as for the meaning of the words "in general" used
above).  Since then several people have informed me that they have found
"traditional" proofs of (i), and some related results.  However, the most
interesting new development is the solution of (ii) by G. C. Shephard [7].
He not only gives an answer to (ii), but also provides other information
that was not noticed previously.  Nevertheless, it is a strange answer, and
quite mysterious as to its geometric meaning.

In order to describe Shephard's results we need the concept of
deflection  at a vertex of an oriented quadrangle  Q = [V1V2V3V4].  We
start by extending the side  Vi-1Vi  beyond  Vi, to  Wi.  The deflection  θi
of  Q  at  Vi  is the angle, less that  π,  through which the ray  ViWi  has
to be turned in order to coincide with the ray  ViVi+1;  the deflection is
counted as positive if the turn is counterclockwise, and negative
otherwise.  For example, all deflections are positive in Figure 1(a), while
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in Figure 1(b) only  θ2  and  θ3  are positive, the other two are negative.
Clearly,  ∑i  θi   0  (mod 2π)  in all cases.  Shephard's result is the
determination of a number we shall denote by  µ,  the absolute value of
which is the similarity ratio of  Q2  to  Q;  clearly, this ratio is unchanged
by cyclic permutations of of the vertices of  Q, or reversal of orientation.
Shephard's result can be formulated as:

(a) |µ|  depends only on the deflections  θi.

(b) The value of  µ  is given by

–8µ =  ∑j  
1

sin2θj
    +   

sin θ1 sin θ3 + sin θ2 sin θ4
sin(θ1+θ3) sin (θ1+θ4)   · ∑j  (-1)j sin2θj  

While (a) is interesting, the formula in (b) is really rather strange;
any interpretation of its relation to other geometric aspects of the
quadrangles in question would be most welcome.

The definitions of the mapping  β   and of deflections can be
extended to pentagons (or polygons of any other number of sides) in the
obvious way.  As mentioned in [2], the unexpected property of  β  for
pentagons  P  is that   P3 = β(P2) = (β(β(β(P)))  is similar to  P1.  So far
there has been no proof of this fact by traditional methods; moreover,
here we are still lacking the analog of Shephard's evaluation (b) of the



Page 3

ratio of similarity.  On the other hand, computational evidence is that
Shephard's result (a) does extend to pentagons.  There has been no
advance in our understanding the relationship between the shapes of
pentagons and of their descendants under the  β  transformation, or of the
situation concerning the application of  β  to polygons with six or more
sides.

It seems appropriate to discuss here another topic.  As far as I
know it has no direct connection with Langr's problem, but there are so
many analogies in the structure of the known facts and open problems
that I feel the two topics should be juxtaposed –– possibly even
considered as parts of a more general investigation of transformations
among polygons.

Starting from a convex pentagon  P = V1V2V3V4V5,  by drawing
its diagonals another convex pentagon  P1 = D1D2D3D4D5 = δ(P)  is
obtained (see Figure 2); we may call this the diagonal construction.  I. J.
Schoenberg (in [5, p.102] and in some earlier publications) conjectured
that the sequence of pentagons  P,   P1 = δ(P)  ,  P2 = δ(δ(P))  ,  P3 =
δ(δ(δ(P))), ... always converges to a single point, say  λ(P).  (Since   P1 =
δ(P)  is contained in the interior of  P,  it is easily seen that this sequence
converges either to a point, or to a segment.)  Schoenberg's
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conjecture was established independently by Moran [4] and Schwartz [6].
Both proofs start by establishing that  P1 = δ(P)  is projectively equivalent
to  P.  By this is meant that there is a projective transformation  τ  of the
extended plane (that is, the projective plane; see, for example, Coxeter [1])
which maps points to points and lines to lines, such that the action of  δ
on  P  coincides with that of the diagonal construction,  τ(P) = δ(P).
Therefore the iterations of  δ  coincide with those of  τ,  from which the
affirmative answer to Schoenberg's problem may be deduced.  However,
just as the similarity ratio in the solution of Langr's problem is quite
complicated, so is the determination of the limit point  λ(P)  in
Schoenberg's problem.  The description of  λ(P)  would leads us too far
afield, and the interested reader is urged to consult [6].

The diagonal construction can be applied to polygons with more
that five sides.  Parallel to the situation concerning the bisector
construction for pentagons is the result of Schwartz [6] that   δ(δ(H))  is a
projective image of the polygon  H*  obtained by a suitable renaming of
the vertices of the convex polygon  H,  so that, in fact,  δ(δ(δ(δ(H))))  is a
projective image of  H.  This is illustrated in Figure 3.  However, just as
the behavior of the bisector construction on pentagons is still not fully
understood, so is the behavior of the diagonal construction on hexagons.
The analogy extends to polygons with more sides –– in either case there
are tantalizing hints of the facts, but little that is certain; in particular, there
is experimental evidence that no iteration leads to a similar or projectively
equivalent polygon, although some near-periodicity phenomena can be
observed.

One additional property of the diagonal construction that is
indicated by computational experiments is the following.  Let  ρ(P)
denote the product of the cross-ratios  ∏i [Vi,Vi+2;Di,Di+1], where  Vi's
are the vertices of the polygon  P, and  Di's  are the intersections of the
diagonals, as in Figure 2.  Since in the case of pentagons P  and  δ(P)  are
projective images of each other, obviously  ρ(P) = ρ(δ(P)).  However,
numerical evidence shows that that the relation   ρ(P) = ρ(δ(P))  holds for
all convex polygons  P, regardless of the number of sides, although for
polygons  P  with more than five sides  P  and  δ(P)  are not projectively
related.  It would be very interesting to have a proof of this observation.

It should be noted that for convex polygons with  7  or more
sides, the diagonal construction can be complemented by analogous
constructions that use longer diagonals (see Figure 4a).  These appear to
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involve nonconvex polygons even if is the starting polygon is convex.
Other constructions that can be considered as analogs of the diagonal
construction can lead from convex polygons to convex polygons,
possibly with fewer sides than the starting one (Figure 4b).  All such
constructions remain completely unexplored.

To end with some general observations: I believe that the
attraction geometry holds for many people stems, in roughly equal parts,
from two aspects.  On the one hand, there is its visual appeal and impact,
which conveys information at a much more immediate level than text or
formulae. On the other hand, there is the lure of the unexpected: very
small changes in formulation often lead from easy exercises to unsolved
problems, whose inherent difficulty is not due to the thickness of the
layers of abstraction surrounding them.  The topics we have discussed in
the preceding pages remain challenging, although there would have been
no difficulty in making the questions understandable to Euclid or
Archimedes, or in explaining them to any youngster today.
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