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Already Euclid knew (as do all high-school students –– or do
they?) that the perpendicular bisectors of the sides of a triangle are
concurrent, meeting at the center of the circle circumscribed to the
triangle. Strangely enough, the question what do the perpendicular
bisectors of the sides of a quadrangle do (see Figure 1) seems to have
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been asked only relatively recently, in 1953.  Problem E 1085, proposed
by Josef Langr [3], is the following (reproduced in full from [3]):

The perpendicular bisectors of the sides of a quadrilateral  Q
form a quadrilateral  Q1,  and the perpendicular bisectors of the sides of
Q1  form a quadrilateral  Q2.  Show that  Q2  is similar to  Q  and find the
ratio of similitude.

No solution of problem E 1085 was published in the intervening
forty years.  The next appearance of the topic is in the book [4] by C.
Stanley Ogilvy, page 80; the reference to Langr is given on page 177.  It
is not clear whether Ogilvy had a solution or not; if he did, he kept it to
himself.  In fact, to judge by the subtitle of the book, he may well not have
had it.
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The only later mention of the matter is in a very interesting book
[1] of a completely different character; through [1] I first became aware
of the question.  As its title indicates, Chou's book is devoted to the
theory and practice of having theorems in elementary geometry proved by
specially developed computer software.  As Example 65 in [1] he has his
software prove the similarity part of Langr's problem.  (In the next
Example 66 Chou uses the software to establish that (in Langr's notation)
if Q3 is formed by the perpendicular bisectors of  Q2  then  Q3  and  Q1
bear the same relation as  Q2  and  Q.  Since this is completely trivial in
view of the result of Example 65, I suspect that some misunderstanding
occurred here.  This opinion is reinforced by Chou's attributing this as a
problem to Ogilvy, although Ogilvy mentions it as obvious.)

Intrigued by all this I set up a simple program in Mathematica®
software to draw any preassigned quadrangle as  Q  and to compute and
draw the corresponding quadrangles  Q1 and  Q2.  The outcomes of
several such experiments appear in Figure 2.  Numerical data yield
evidence that (to at least 12 decimal places)  Q2  is similar to  Q  in each
of the cases.  In fact, the experiments show that  Q  and  Q2  are not only
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Figure 2.
similar but are homothetic (that is, one is obtained from the other by
uniform stretching from a fixed point, without any rotations or
reflections).  Moreover, for each of the three types of quadrangles
(convex, nonconvex simple, and selfintersecting)  Q1,  and hence  Q2  as



well,  is of the same type as  Q.  One further observation: the ratio of
homothety between  Q  and  Q2  is positive for simple nonconvex  Q,
and negative for convex and for selfintersecting  Q.  As shown by the
examples in Figure 2, the absolute value of the ratio can be either less or
more than 1.  However, I am not closer than any of the other writers to
guessing what is, for a given quadrangle, the homothety ratio for which
Langr asked.  This is only one of the many questions that arise in this
context; we shall discuss several other aspects –– some much more basic
–– after we briefly look at the case of pentagons.

The idea is clear, even though it does not seem to have been
mentioned in the literature.  We should ask what happens if, starting from
a suitable pentagon  P, we use intersection points of perpendicular
bisectors of adjacent edges of  P  as the vertices of a new pentagon  P1,
go from this one by the same procedure to P2,  etc.?  An easy
modification of my earlier program made it possible to conduct
experiments without much effort.  As is visible from Figure 3,  no
obvious relationship between  P  and  P2  emerges.  However, with a bit
more patience we find that now it is  P1  and  P3  that are homothetic (see
Figure 4), even though  P  and  P2  are not.  Naturally, it follows that P2
and  P4  are homothetic, and so on.  The same result, that  P2  and  P4  are
homothetic, is obtained starting with any pentagon of whatever shape (as
long as no four of its vertices are concyclic).
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If the reader now has the same idea as the author had –– that for
hexagons the similarity will start with the third and fifth iteration –– we
share in the disappointment.  In fact, I have no idea what happens for
hexagons or polygons with more sides.  The only indisputable fact is that
nothing as simple as similarity after a few steps takes place.  So let us
now list a number of open problems, in what probably is an increasing
level of difficulty.

Problem 1. Find a full solution of Langr's problem; that is,
(i) prove directly that  Q2  and  Q  are homothetic; and
(ii) determine the ratio of homothety in dependence on the

shape of the starting quadrangle.

Notice that this would, among other consequences, also find all
the quadrangles for which the ratio is  1  or  -1.

Problem 2. Characterize those quadrangles  Q  for which  Q
is similar to  Q1.

Problem 3. Investigate in detail what happens with pentagons.
Some of the puzzling aspects here are:
(i) While every quadrangle is obtainable as  Q1  for a suitable

Q,  this is clearly not the case with pentagons; which ones can be obtained
?  In particular, it seems that no convex pentagon is  P1 for any  P !  For
which pentagons is  P  similar to  P2, or to P1 ?

(ii) What is the relation between the "types" of  P, P1  and
P2  ?  Here by "type" I mean any characteristic such as convexity, or
selfintersection, or whatever works.

Problem 4. What is actually happening with hexagons ?  In
some instances, iterating the construction sufficiently many times seems



to lead to stabilization of the shapes, while in other cases nothing like that
appeared in my experiments.

Problem 5. The attentive reader may have noticed that I did not
use the word "theorem" so far.  So the question arises what is the
character of the facts I have been discussing ?  Do we start trusting
numerical evidence (or other evidence produced by computers) as proofs
of mathematics theorems ?  In some situations this is easily answered in
the affirmative.  For example, if somebody claims that a certain integer  n
has been proved by computer to be prime, and if another person
independently checks this assertion and comes up with the same result,
there seems to be no doubt that  n  has been proven to be a prime.
Probably similar is the situation regarding "mechanical proofs" such as
those of Chou [1].  If the same result is "mechanically" verified by
somebody else, there will probably be general agreement that the
assertion in question is indeed a fact.  But, disregarding Chou's
"mechanical proof" of the similarity part of Langr's problem, is there any
consequence to be drawn from the fact that in example after example
numerical evidence establishes the homothety of  Q  and  Q2 ?  Seeing
that anybody with even a very superficial knowledge of computers and
software can write a program that will check the validity of the claims
made above, how much can one doubt that regardless of which pentagon
we start with,  P1  and  P3  will be homothetic ?  On the other hand, if we
have no doubt –– do we call it a theorem ?  According to my Webster [5]
a theorem is "a statement in mathematics that has been proved or whose
truth has been conjectured".  While I find this to be far too inclusive a
definition, I do think that my assertions about quadrangles and pentagons
are theorems.

A few remarks may possibly make the reader more receptive to
the conclusion that regardless of the pentagons and hexagons discussed
here, the mathematical community needs to come to grips with the
possibilities of new modes of investigation that have been opened up by
computers.

First, it should be noticed that if we try to prove the assertions
about pentagons (or quadrangles, or hexagons) using analytic geometry,
we wind up with some algebraic relations between the variables
specifying the coordinates of the starting points.  Thus a validation of the
claim is equivalent to the verification that certain (possibly quite
complicated) algebraic expressions are identically satisfied, that is, are
identities.  Now, just as in case of polynomials of a single variable and
degree  d  the identity can be verified by checking numerical coincidence



in  d+1  cases, so for polynomial expressions in several variables identity
can be established by a sufficient number of numerical verifications.  But
in fact, as pointed out long ago by Davis [2], an algebraic identity can be
conclusively established by a single numerical check: we only need to use
algebraically independent transcendental numbers!  It is true that this is
not very practical, since our computers do not operate with transcendental
numbers.  But in a sense, we can achieve a similar result much more
simply.  Assume that the question whether  P1  is always homothetic to
P3  reduces to the question whether a polynomial  p = p(x1,...,x10)  of
some degree (say 10000) in the ten variables of the coordinates of the
vertices of  P  is identically zero or not.  If  p  is not identically  0  then  p
= 0  determines a set of dimension at most 9 in the 10-dimensional space
of the  xi's;  hence, if we choose at random a set of ten values for the
variables, the probability that they will represent a point of the low-
dimensional set is very small.  Thus, if experiment after experiment
comes up with the result that the value of  p  for the chosen entries is  0,
it would be a very unwise investment to put one's money against the
general validity of  p = 0.  (Notice that we are not talking about odds of 1
to a million –– but to incomprehensibly large numbers !)

In short, while this is not the right place to enter into deep
arguments on one or the other side of the issue, it seems clear that we
have here a serious mathematical, philosophical and practical problem that
needs to be addressed, and also that the approach followed in the first part
of this note can lead in many other cases to new and worthwhile results
and insights.
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