GRAPHS

Chapter 9 M.A.Weiss Data Structures & Algorithms Analysis in Java,

Chapters 7,8 K.H.Rosen, Discrete Mathematics and Its Applications

Introduction. Graphs have emerged as a major tool in computer science. Many truly fascinating algorithms have been developed for graphs. The largest bulk of NP-complete problems are graph problems. The purpose of this short review of concepts and some techniques is to study some of the fundamental ideas of this field and take a close look at a couple of algorithms (time permitting). We will review data structures, basic algorithms: BFS, DFS, Min Cost Spanning Tree, Shortest path, Network flows, Matchings, Graph coloring, Eulerian and Hamiltonian Cycles. Other classical Graph algorithms such as Planar Graphs (planarity testing algorithm) Graph Isomorphism and the GMT (graph minors theorem) will be covered in other classes (hopefully).

References: [1] A. Bondy and U.S.R. Murty, Graph Theory with applications.

 [2] Sedgewick, Algorithms

 [3] A. Gibson, Algorithmic Graph Theory

	 [4] Udi Manber, Introduction to algorithms, a creative approach

Definition. A GRAPH is a set of elements called VERTICES and a collection of pairs of vertices called EDGES.

The name GRAPH is derived from the common visual representation of these objects. Note that we use the term collection rather than set for the edges. The reason is that we permit pairs to be listed more than once. Graphs are classified according to some very basic properties of their vertices, edges and some additional structures. We will denote graphs by G, their vertices by V(G) and the edges of the graph G by E(G).

Definition. A GRAPH G is finite if both V(G) and E(G) are finite.

 The following examples will demonstrate how graphs are commonly described or constructed in practice.

Examples

1) Direct listing:

 V(G) = {a,s,d,f,c,b,j,k,l,r,t,y}

 E(G) = {(a,s), (d,a), (f,a), (c,a), (y,y), (r,t), (r,a), (b,y), (l,t), (s,a), (c,k), (t,c), (l,j),

 (j,b), (a,f) (c,c), (y,r), (c,a)}

This graph has 12 vertices and 18 edges. Note that there is no restriction on the pairs (y,y) or on duplication of edges ((c,a) is listed twice). As you can imagine, this type of listing is only used in class discussions.

2) 	V(G) = All students currently attending UW

	E(G) = All pairs of distinct students that are currently taking a class together.

This graph has about 40000 vertices and tens of thousands of edges. This is the most common way graphs are constructed in practice: describing the entities that will be the vertices and defining the edges by specific relation(s) between the vertices.

3)	V(G) = All classes taught at the UW this year.

	E(G) = Two distinct vertices are connected by an edge if there is a student that

 takes both classes.

This graph is similar in nature to example 2. It is a useful tool for scheduling final exams. (We will discuss this when we talk about graph coloring).

4)	V(G) = The 68000 transistors in the Motorola MC68000 Chip.

	E(G) = pairs of transistors directly connected by wire.

In one of the steps of chip design, a list of transistors and connections between them is specified. Graph theory is used to decide how to place the transistors on a silicon wafer and how to route the connections. (Planar graphs).

(Note: Todays technology have more than 3,000,000 transistors on a single chip).

5)	V(G) = All cities serviced by United Airlines.

E(G) = Any direct flight connecting two cities will determine an edge (this edge

is identified in practice by the flight number).

Observe that between the vertices Chicago and New York there will be many edges.

6)	In some applications a major step involves the decision how to model a problem, or more specific, decide what will be the vertex set and which vertices will be connected by edges. The birth of Graph Theory is attributed to this process. The seven bridges of Königsberg are described below. The people of Königsberg knew that if one wants to cross all 7 bridges, he will have to cross some bridges more than once. Leonard Euler, the great Swiss Mathematician explained (proved) why this is the case. He modeled this problem by constructing a graph with 4 vertices and 7 edges as shown in Figure 1. and argued that it is impossible to traverse all 7 edges with out using some edges more than once.

 �EMBED Word.Picture.8���

7)	Let the vertices of a graph G be the "LINES" of a given assignment problem. Two lines are connected by an edge if they have a common entry. We may also assign a weight to this edge, i.e. the value of the common entry.

By a line we maen either a row or a column of the assignment matrix.

8)	V(G) = {computers on a given network}

	E(G) = {pairs of computers connected by a hard link}

9)	V(G) = {processors in a multi processor computer}

	E(G) = {pairs of processors connected by a hard link}

	(See the nice article The Connection Machine, Scientific American)

10) The "Instant insanity" puzzle. This puzzle consists of four cubes whose 6 sides are colored White, Red, Yellow and Blue. The object of the puzzle is to arrange the four cubes in a "tower" such that each wall of the tower will contain all 4 distinct colors. Define a graph as follows:

	V(G) = W, R, Y, B

	E(G) = Number the cubes by 1,2,3 and 4. Connect a pair X,Y of vertices by an

edge named i if cube number i has a pair of opposite sides colored X and Y.

This graph has 4 vertices and 12 edges. It is a simple matter to use this model for solving the "Instant insanity" puzzle.

�

Basic Graph Terminology.

If a and b are a pair of vertices in a graph G and (a,b) is an edge of G (this will be our notation for the edge (a,b)), we say that a and b are connected by an edge or adjacent. An edge (a,a) is called a loop.

Type of graphs:

Multigraph:	Edges: unordered pairs. May contain parallel edges and loops.

Simple Graph (graph): Edges: unordered pairs, no loops or multiple edges.

Directed Graph (DiGraph): Edges: ordered pairs.

Weighted Graph: A graph in which a weight (cost) is assigned to edges.

A sequence of vertices a1, ... ,an where (ai,ai+1)(E(G) is called a walk. We say that the walk connects a1 and an.

If the walk does not intersect itself we call the walk a path. Note that if there is a walk from a1 to an then there is also a path from a1 to an.

A closed path a1, ... ,an, a1 is called a cycle (circuit).

The length of a path is the number of edges it contains.

The distance between two vertices is the length of the shortest path between them.

A graph G is connected if there is a path between any pair of vertices.

The diameter of a graph is the longest distance between any pair of vertices.

A graph T is a tree if it is connected and has no cycles.

If G is a graph, and G' is another graph with V(G) (V(G') and E(G) (E(G') we call G' a subgraph of G.

If G' is a subgraph of G and V(G') = V(G) we call G' a spanning subgraph of G. If G' is a tree, it is called a spanning tree of G.

A matching in a graph G is a set of edges such that no two share a vertex.

A matching in a graph G is a perfect matching if every vertex of the graph belongs to an edge in the matching.

A graph G is Hamiltonian if it has a path (cycle) that contains all vertices.

A graph G is Eulerian if it has a walk (closed walk) that contains each edge exactly once.

A graph G is called planar if it's vertices can be identified with points in the plane, it's edges with arcs joining the corresponding points so that no edges cross each other.

By a coloring of the vertices of a graph we mean an assignment of colors (numbers) to the vertices so that if two vertices are connected by an edge, they are assigned distinct colors.

A graph G is called bipartite if it's vertices can be colored by 2 colors.

A labeling of a graph is an assignment of distinct labels (symbols) to it's vertices.

Two graphs G and G' are isomorphic if it possible to label the vertices of G and G' by the same set of labels (i.e. by the integers 1,...,n) so that two vertices are connected by an edge in G if and only if they are connected by an edge in G'.

A network is a weighted digraph with two distinguished vertices, S (source) and T (terminal, sink) such that all edges incident with S are directed away from S and all edges incident with T are directed towards T.

The degree (valence) of a vertex a in a graph G is the number of distinct edges (a,x) in G.

The Indegree of a vertex v in a DiGraph is |{(x,v) | (x,v) (E(G)}|

The Outdegree of a vertex x in a DiGraph is |{(x,v) | (x,v) (E(G)}|

�

												REPRESENTATION of GRAPHS

There are various ways to represent graphs, each has it's advantages and disadvantages. We will discuss 3 common ways to represent graphs.

[1] Visual representation. Draw points in the plane, each point corresponding to a vertex of the graph. Connect two points by an arc if the corresponding vertices are connected by an edge (use arrows if the graph is a digraph).This representation is simple and straight forward. It is useful to visualize some properties of graphs. It is obviously limited to graphs of relatively small size.

[2] Adjacency Matrix. Number the vertices of the graph G by 1,2,...,n.

 Define an n x n matrix as follows:

 A[i,j] = 0 if there is no edge between i and j.

 A[i,j] = Number of edges connecting i to j, or the weight of an edge from i to j.

The matrix A is called the adjacency matrix of the graph G. We shall denote this matrix by A(G). This is a very powerful, flexible representation. The same matrix can be used to represent graphs, multigraphs, loops, digraphs and weighted graphs. It also gives us access to all matrix operations, and thus many graph algorithms can be designed to take advantage of these operations. The disadvantage of this representation is it's size. For a graph with n vertices it requires storage of size n2. In many applications only a small fraction of the possible edges are present.

[3] Adjacency list. With each vertex x we associate a single list consisting of the vertices in the graph adjacent to x. The order within each list is usually arbitrary. This representation has the same flexibilities as the adjacency matrix, it is more compact than the adjacency matrix, as it does not account for missing edges. The price for the compactness is denial of access to matrix operations. The usual computer implementation of an adjacency list is an array (or a list) of linked lists. Note that the records used for the linked list implementation can store a variety of fields, thus giving this method a powerful flexibility.

These are the most common representations used for graphs. There are other representations, usually tailored to fit some specific problem. The choice for your implementation usually depends on the operations you will need to perform.

�
 Graph Algorithms.

1. Topological sort 9.2

Input: An acyclic DiGraph.

Output: An ordering of all vertices such that if there is a path from vi (vj then vi will appear before vj in the order.

Note: in a DAG (Directed, acyclic graph) there is a vertex with outdegree 0.

Algorithm: (Figure 9.5)

void topsort () throws CycleFound

{

 Vertex v,w;

for(int counter = 0; counter < NUM_VERTICES; counter++)

v = findNewVertexOutDegreeZero();

if (v = = null)

throw new CycleFound();

v.topNum = counter;

for each w adjacent to v

w.indegree--;

}

(Example: Fig 9.3 page 294)

MAC311	COP3210	MAD3104	 MAD3305	MAD3512	CAP3700 …

Analysis: The for loop (line 1.) is executed |V| times. Each time through the loop, findNewVertexOutDegreeZero(); scans the remaining vertices. So the total time is |V| + (|V| - 1) + (|V| - 2) + … + 2 + 1 = O(|V|2).

A better algorithm:

Scan the vertices and put on a stack all vertices with indegree 0. |V| steps.

Pop a vertex from the stack, reduce the indegree of its neighbors by 1. If the indegree of a neighbor is 0 push it on the stack.

If the stack is empty and there are more vertices left, throw CycleFound exception.

If no more vertices left pop all remaining vertices from the stack.

Analysis: If an adjacency list is used for representing the graph each edge is scanned at most once (step 2). It takes |V| steps to initialize the stack and the stack operations (push and pop) are done once each for every vertex. So the running time of this algorithm will be O(|V| + |E|).

2. Shortest Path (Dijkstra). 9.3

 a. Single source shortest path.

Input: a weighted graph G and a distinguished vertex s.

Output: The shortest paths from s to any other vertex in the graph.

1. Unweighted shortest path: BFS (Breadth First Search) - diameter.

 Decsription: Label s (0

 		Label all vertices directly reachable from s 1.

		If a vertex v is labeled k, then label all vertices u that are directly reachable

 from v and not yet labeld by k + 1.

Table 9.15 page 301 describes a data structure for implementing this algorithm.

Fields in table:

 known Boolean, indicated whether the distance to this particular vertex is known.

dv the actual distance from the source.

pv the “via” vertex, this enables us to construct the actual shortest path.

Example: Execute the algorithm on the “Random Graph” with 9 vertices.

Dijkstra’s algorithm.

Input: weighted graph, source s.

Output: Shortest paths from s to all other vertices.

This is an example of a combination of a greedy algorithm and dynamic programming.

Fields in table (may be kept in the vertex):

 known Boolean, indicated whether the distance to this particular vertex is known.

dv the actual distance from the source.

pv the “via” vertex, this enables us to construct the actual shortest path.

dv is the shortest path from s to v through known vertices only.

pv The shortest path from s to v goes through the vertex pv

Algorithm: for (all vertices w) {

		w.mark = false;

		w.ShortestPath = Infinity;

		w.Path = null; // Shortes path not known.

		s. ShortestPath = 0;

		s.mark = true;

		s.Path = s;

 }//initialize

	while (there exists an unmarked vertex) {

 let w be an unmarked vertex with smallest w.ShortestPath; //Line I

	 w.mark = true;

 for (all edges (w,z) such that z is not marked)

 if (w.ShortestPath + length(w, z) < z.ShortestPath){

 z.ShortestPath = w.ShortestPath + length(w, z); /Line II

	 z.Path = w; //The shortest path to z goes through w.

	 }

 }

Implementation: In Line I we need to find the vertex with smallest ShortestPath. Rather than searching the whole list of vertices we can keep them in a Heap (priority Queue). In Line II we need to scan all neighbors z of w. We find them in the original adjacency list, but then how do we locate them in the heap? We can keep track of the location of a vertex in the heap by creating an array in which the locations correspond to the vertices. So if we think of the vertices as labeled 0,1,…,|V| - 1, the location of the vertex w in the heap will be stored in location number w in the array.

After the update in Line II, the heap may need to be fixed. It takes at most O(log |V|) comparisons to fix the Heap. Every edge is considered at most once in the for loop. Hence the running time will be O(|E|log|V|) (provided that the graph has as many edges as vertices, which is the common case). Since the while loop executes |V| times, if |E| < |V| the running time will be O(|V|log|V|). The “big O” notation permits us to write the running time as: O((|V| + |E|)log |V|).

Note how the choice of data structures impacts the running time!!!!

Graphs �page * arabic�11�

