Priority Queue

Implementing using a completely filled binary tree.

Up-Heap bubbling.

Insert at the end, bubble up.

Example :

15, 19, 13, 23, 8, 5, 12, 10, 16, 11

15, 19, 13 (parent 15, CEX(3,1))

13, 19, 15

13, 19, 15, 23 (parent 19, CEX(4,2))

13, 19, 15, 23

13, 19, 15, 23, 8 (parent 19, CEX(5,2))

13, 8, 15, 23, 19, (parent 13, CEX(2,1))

 8,13, 15, 23, 19

8,13, 15, 23, 19, 5 (parent 19 CEX(6,3))

8,13, 5, 23, 19, 15 (parent 8 CEX(3,1))

5,13, 8, 23, 19, 15

5, 8, 13, 15, 23, 19, 12, 10, 16, 11

5, 8, 12 15, 23, 19, 13, 10, 16, 11

5, 8, 12, 10, 23, 19, 13, 15, 16, 11

5, 8, 12, 10, 23, 19, 13, 15, 16, 11

5, 8, 12, 10, 11, 19, 13, 15, 16, 23

A single Heap (the red portion) grows step by step until it accommodates all data.

 5

8 12

 10

 11

 19

13

15

 16 23

Analysis: If there are currently 20 nodes in the heap to insert the 21-st node we execute:

CEX(21,10) CEX(10,5) CEX(5,2) CEX(2,1)

Note that:
4= (log 21(

In general: if there are currently m-1 nodes in the heap it will take (log m(CEX’s to insert the m-th node into the Heap in the worst case. In this approach, we always have a Heap (the red part of our demo) and in each step we increase the size of the Heap by 1 node.

The total number of CEXs performed will thus be:

log 1 + log 2 + log 3 + … + log n = O(nlog n)

1. log 1 + log 2 + log 3 + … + log n (nlogn

2. log 1 + log 2 + log 3 + … + log n (

 n/2 log n/2 = n/2 (log n – 1) = (nlog n)/2 – n/2 = O(nlog n)/2 = O(nlog n).

Heap-Sort-in-Place.

Sorting :

1. heap = new Build-heap(s);

2. int m = heap.size();

3. while (m > 1){

4. exchange (1, m--);

5. siftDown(1,m);

}

Example:

5, 8, 12, 10, 11, 19, 13, 15, 16, 23

23, 8, 12, 10, 11, 19, 13, 15, 16, 5

8, 23, 12, 10, 11, 19, 13, 15, 16, 5

8, 10, 12, 23, 11, 19, 13, 15, 16, 5

8, 10, 12, 15, 11, 19, 13, 23, 16, 5

16 ,10, 12, 15, 11, 19, 13, 23, 8, 5

10, 16, 12, 15, 11, 19, 13, 23, 8, 5

10, 11, 12, 15, 16, 19, 13, 23, 8, 5
23, 11, 12, 15, 16, 19, 13, 10, 8, 5

11, 23, 12, 15, 16, 19, 13, 10, 8, 5

11, 15, 12, 23, 16, 19, 13, 10, 8, 5

13, 15, 12, 16, 23, 19, 11, 10, 8, 5

12, 15, 13, 16, 23, 19, 11, 10, 8, 5

Analysis: the while loop executes exactly m times. Each time it calls siftDown which executes at most log m CEXs. Hence the total executing time of the HeapSort is O(nlog n).

Bottom-up Heap construction.

Builds a heap in O(n) steps. It starts with many small heaps, then merges them into larger and larger heaps until all heaps are merged into a single heap.

The number of CEX’s executed when inserting node v at height d is at most d.

We associate with every node v a path p(v) defined as follows: “step right then go left, all the way to the leaf”.

This is not the path followed by v when v is inserted, but it has the same length. Two distinct paths never share an edge!!! Thus the total path length is the number of edges in the tree which is n-1. Thus it takes O(n) steps to construct the heap Bottom-Up.
