


Definition: A tree is a connected graph with no cycles.


Observations: 


1. A finite tree must contain vertices of degree 1.


Proof: Let G be a graph with all vertices of degree ( 2. Start with a vertex and exit along an edge incident with it. In the next vertex select a new edge (there is one because the degree of the vertex is ( 2). Continue until there is an edge connecting your current vertex to a previously visited vertex. There must be such an edge because every time we visit a new vertex there will be another edge incident with it. This will close a cycle.





2. A tree on n vertices contains n – 1 edges.


Proof: By induction on the number of vertices.


P(1): A tree with one vertex contains zero edges.


P(n): A tree with n vertices contains n – 1 edges.


P(n+1): A tree with n + 1 vertices contains n edges.


       Proof: The tree T has a vertex of degree 1. Remove it and the edge incident with it. The resulting subgraph is a tree with n vertices. By the induction hypothesis it contains 


n –1 edges and therefore the original tree contains n edges.





3. In a graph the number of edges of odd degree is even.


Proof:  �EMBED Equation.3���





A list of Graph Algorithms:





DFS (Depth First Search) - connected, cut vertices.


BFS (Breadth First Search) - diameter.


Minimum Cost Spanning Tree.


All pairs shortest path (Floyd).


Maximum Matching.


Maximum flow in a network (Ford Fulkerson).


Eulerian cycles.





There are two common techniques for traversing (searching) graphs. Both techniques produce a systematic traverse and when properly applied are useful for checking some basic properties of graphs. Both traverse the graph along the edges of a forest (spanning tree if the graph is connected).





DFS  (Depth first search)


Algorithm: Start with an arbitrary vertex v.


Visit a neighbor w of v. Continue visiting vertices that have not been visited yet. If w has no unvisited neighbors return to the vertex from which you reached w (backtrack). Repeat until all vertices have been visited. Note that each edge will be tested at most twice. The traversed edges will never contain a cycle.





BFS (Breadth first search)


1) Choose v. Visit all neighbors of v that have not been visited.


2) For each visited vertex repeat the same process until all vertices were visited.





The minimum cost spanning tree:





Given a weighted graph G find a minimum cost spanning tree.





Algorithm 1 (Kruskal): 


1) Order the edges by increasing weight.


2) Add the edge ei if it does not produce a cycle. Ignore if it does.


3) Stop when the (n-1)-st edge is added.





The following description  explains what this algorithm does:





At any given stage we have a collection of disjoint trees (a forest). We add the cheapest edge that joins two distinct trees into a single tree. This is a GREEDY algorithm. The spanning tree produced is not unique.  The initial state is just a collection of isolated vertices (trivial trees).





Algorithm 2 (Prim)


	1) Choose an arbitrary vertex as your initial tree.


	2) To the current tree T add an edge (g,t) where g Î G\T , t Î T and the edge (g,t) 	 	     	     chosen is the cheapest possible.


	3) Stop when T has all vertices or no more edges are available.


Basic Observations:





Network Flow Problems.  9.4





A network is a directed weighted graph with two distinguished vertices: S, T (source and terminal). Outdegree(T) = Indegree(S) = 0.


Each edge of the network has a positive weight c(e), called the capacity of the edge e. 


A flow is a function f(e) that satisfies the following rules:


f(e) (  c(e)  (the flow through the edge e cannot exceed its capacity)


Except for S and T  the flow coming into a vertex is equal to the flow going out.


      		�EMBED Equation.3���


An Augmenting Path with respect to a given flow f(e) is a path from S ( T  such that:


If (u,v)  is an edge on the path and (u,v) ( E(G) then f((u,v)) < c((u,v))  (forward edge. The difference, c((u,v)) - f(u,v)) is called the slack.


(u,v) ( E(G) and f((u,v)) > 0.  (Flow can be “borrowed” from this edge).





Observation:


A flow is maximum if and only if it does not have an augmenting flow. (Manber page 241)





Example:
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S a b T is NOT an augmenting path! There is no slack in the edge b ( T.


S a b c T is an augmenting path! The smallest slack is 2. Increase the flow in S ( a by 2, the flow from a ( b by 2, decrease the flow from c ( b by 2 and increase the flow from c ( T by 2.





Max Flow Min Cut Theorem: In a network flow the maximum flow is equal to the capacity of a minimum cut.








The total amount of flow reaching T will now be 15. Is this the maximum flow?


Can this flow be augmented???





NO!!! There is a cut set of capacity 15! This is a maximum flow! 








Finding a maximum matching in a graph:





Recall: a matching is a set of edges that no two edges share a vertex.





Let M be a matching in a graph G. An alternating path is a path in which the edges alternate between M and edges in G\M. Note that if we remove the edges of M from an alternating path, the remaining edges plus the other edges of M determine another matching. An alternating path is called an augmenting path if the resulting new matching is bigger than the original.





In many instances we need to find a maximal matching in a simple graph, in this case you may assume that all edges have weight = 1. Many problems can also be transformed to finding a maximal matching in a simple graph. In this case we are looking for the largest set of edges such that no two have a common vertex. On graphs with a reasonable number of vertices this process can be easily hand simulated.





The assignment problem. We can transform the assignment problem to a maximal matching problem in a graph as follows:


Let V(G) be the lines of the assignment problem A (in other words, G has 2n vertices). Row i and column j are connected by an edge of weight M - Ai,j , where M is larger than the largest entry in A. It is easy to see that a maximal matching in G will determine a minimum cost assignment for A.





In the Hungarian Method we step through various cleverly constructed equivalent assignment problems. In each assignment we try to find whether there is a 0 cost assignment. To find it, we construct a graph G with V(G) as before. Row i and column j are connected by an edge if Ai,j = 0. Note that an assignment problem has a 0 cost assignment if and only if it's corresponding graph G has a perfect matching. Identifying the smallest number of "lines" that cover all 0's is equivalent to finding a maximal matching.


The process described above is a reduction of one problem to another (in this case, the Assignment problem is reduced to the maximal matching problem).





Theorem: A matching is maximal if and only if it has no augmenting path.


Proof: (We will prove this theorem only for simple graphs).


Clearly, if (G,M) has an augmenting path then M is not maximal. Assume now that G does not have an augmenting path. We proceed by negation, so assume that M is not maximal. Let M' be a matching having more edges than M. Let G' be a spanning subgraph of G with E(G') = M \ M’. All vertices of G' have degrees 0,1 and 2. It follows that G' has connected components which are even cycles, or paths. The even cycles will have half their edges in M and half in M'. Since M' has more edges than M one of the paths must have more edges from M' than from M. This path is an augmenting path, contradicting our assumption.





The theorem leads to an algorithm for finding a maximal matching in a graph:


[0] Initialize:   M = f,


[1] While there are vertices v that are not covered do (v is covered if v Î M)


      Path(v) = Alternating_Path(v, P);


[2] If Path(v) is an augmenting path M = Augment(M);


The procedure Augment(M) deletes the edges of M from the augmenting path and adds the edges of the path not in M. 


Procedure Alternating_Path(v, P):


 [0] P =  f ;


 [1] choose an edge e = (v,u), u Ï P,  P = (v,u);


 [2] if u is not covered then return P; else v = w {(u,w) Î M}


 [3] Alternating_Path(w, P);


 	


	Note that a graph with an odd number of vertices cannot have a perfect matching. More generally, if a graph G has a set of vertices S whose removal results in a graph G' = G \ {S} having more than |S| odd components then clearly G cannot have a perfect matching. Surprisingly, this is the only reason why a simple graph may fail to have a perfect matching. This result was first proved by Tutte:





Theorem (Tutte): The graph G has a perfect matching if and only if for every set of vertices S ( V(G)  G\{S} has no more than |S| odd components.


(for a proof consult the literature)





Matchings in Bipartite Graphs:





Hall's Theorem: Let G be a bipartite graph with bipartition (X,Y). G has a matching that saturates X iff for every subset A  (  X   |N(A)| ( |A|.


Proof: Clearly if X is saturated by a matching M for every subset A  (  X   |N(A)| ( |A|.


We need to show that if X is not saturated then there is a subset A  (  X  such that :


|N(A)| < |A|. Asume that M is a maximal matching. This means that G does not contain an augmenting path with respect to M. Since X is not saturated, there is a vertex g Î X which is not saturated by M. Let Z = {a | such that G contains an alternating path a -- g}. Clearly, since M is maximal, g is the only non saturated vertex of X that belongs to Z. 


Let A = X(Z \ {g}. As noted before, every vertex in A is matched. Let B = Y( Z.  From the definition of A and B N(A) ( B and since M is maximal N(A) = B. Also, all neighbors of g are contained in B. But this means that N(A + g) = |B| < |N(A + g)|.





Definition:  A set of vertices C is said to cover the graph G if every edge in G is incident with a vertex from C.





König's Theorem: In a bipartite graph the size of a maximum matching is equal to the number of vertices in a minimum cover.





Note: In the Hungarian method we find a set of lines (vertices) that cover all the zeroes (edges).   








Finding an Eulerian cycle in a graph:





Theorem: A finite graph G is Eulerian if and only if it is connected and every vertex has an even degree.





Proof:  Let C be the longest closed walk in G. C = [e1,...,ek]. Assume that there is an edge e Ï C. Let  e = (u,v). Since G is connected, there is a path between v and some vertex a of C. This means that there is a vertex x Î C and an edge e' = (x,y) such that e' Ï C. We can now increase the walk C as follows: start at the vertex x and the edge e'. Since every vertex has an even degree, there is an edge f' = (y,z) such that f' Ï C. This process can only stop when we get back to x. But then we can add this "loop" to the original walk and obtain a longer walk. This contradicts the assumption that C was the longest, hence C is an Eulerian cycle.





Note that the proof yields an immediate algorithm for constructing an Eulerian cycle in an Eulerian graph. The proof also applies to multigraphs and can be easily modified to multi digraphs as follows:





Theorem: A finite digraph G is Eulerian if and only if it is connected and every vertex v has indeg(v) = outdeg(v).  


(indeg(v) = |{u | (u,v) Î E(G)}| and outdeg(v) =  |{u | (u,v) Î E(G)}| )








GOOD CHARACTERIZATION





A good characterization of a solution to a computational problem is an easily verifiable statement (certificate) proving that the proposed solution solves the particular instance. Consider for example the following questions: 


	Is G bipartite ? 


	Does G have  a perfect matching ? 


	Is G Eulerian ? 


	Is G Hamiltonian ?


For the first three problems we have a GOOD CHARACTERIZATION. To convince someone that G is not bipartite just give him a certificate containing an odd number of vertices. It can be easily checked that they form an odd cycle in the graph G.


 Does G have a perfect matching ? If it does, give it in your certificate, if not, give a certificate that contains a set of vertices S and |S| + 1 odd components in G\{S}. 


Is G Eulerian ?  Give the Eulerian cycle if it is, or indicate a vertex with an odd degree. 


Is G Hamiltonian ? If it is, give a certificate that contains the Hamiltonian cycle, if it is not (give up). This is an example that does not have a good characterization. In practice, computational problems that do have a good characterization usually have also an efficient algorithm.





                             �


                                                  A graph N.





Consider for example the graph N. It is not Eulerian, not Hamiltonian and does not have a perfect matching. It is not Eulerian because it has vertices of degree 3. This is a simple clear characterization. Is there a "quick, clear" way to convince you that the graph is not Hamiltonian or that it does not have a perfect matching? While both questions can be answered affirmatively for this example, there is a general good characterization for perfect matchings but not for Hamiltonian cycles. For a finale, consider the following example:





 


                  		 �  





This graph is clearly planar, non Eulerian. It has a perfect matching. Is it Hamiltonian?


�
And what about the following graph, is it hamiltonian ?





			�








Approximation algorithms for the TSP.





A TSP instance with cost matrix A = (Aij), is called Euclidean if Aij+ Ajk ( Aik.





Claim:  It is possible to find a tour in a Euclidean TSP whose cost is at most twice as expensive as the cost of  the optimal tour. The steps are described below:


Step 1. Find a minimum cost spanning tree.


Step 2. Double every edge of the tree to obtain a graph in which every vertex has an even degree.


Step 3. Find an Eulerian cycle in this graph.


Step 4. Modify the Eulerian cycle to a tour  as shown below.





2) A better approximation:


Step 1. Find a minimum cost spanning tree.


Step 2. Let V(G) be the subset of vertices that have an odd degree in the spanning tree. 


Step 3. Find a minimal cost perfect matching for these vertices (note this always exists).


Step 4. Add the edges of the perfect matching to the tree and find an Eulerian cycle in this graph.


Step 4. Modify the Eulerian cycle to a tour  as shown below.








        �





Drills:


(1) Show that the cost of the resulting tour is as claimed.


(2) Prove that finding an optimal tour in a Euclidean TSP is polynomially equivalent to finding an optimal tour in a general TSP.


(3) Prove that the second approximation yields a tour with cost at most 50% more expensive than the optimal tour.





These examples demonstrate how problems can be modeled as graph problems and how graph algorithms can be "chained" to solve them. �
A sorted list of some of the terms discussed in this chapter.


BFS


bipartite 


coloring 


connected


cycle (circuit). 


degree (valence) 


DFS


diameter of a graph 


Directed graphs (DiGraphs) 


distance between two vertices 


Eulerian


Eulerian 


Graph coloring


Hamiltonian Cycles


Hamiltonian  path (cycle) 


labeling 


length of a path 


matching 


Matchings


Min Cost Spanning Tree


Network flows


network 


path


perfect matching 


Shortest path


simple graph 


spanning subgraph of G. 


subgraph


tree 


walk


weighted graph 


�
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