Shell Sort

(Section 7.4 page 228) Uses a sequence of increments h0, h1, … , h​k as follows: at each “phase” one increment is used to partion the array into sub-arrays. For instance, if hi = 5, the array will be partitioned into five arrays:

[A[0], A[5], A[10],…,A[5*j],… ,A[5*(n/5)]]

[A[1], A[6], A[11], …, A[5*j+1],…, ]

.

.

[A[4], A[9], A[14], …, A[5*j+4],…, ]

This is only a virtual partition. Each part is sorted by a simple sorting algorithm such as Bubble-Sort or Insertion Sort. We start with a large increment and choose the last increment to be 1. The idea behind this algorithm is to start by comparing entries “far apart” in order to remove many inversion in relatively few comparisons.

Original partition: hi = 2i. The analysis of this simple algorithm is complicated. The best sequence of increments is not known. For the original sequence the worst case is actually O(n2). This will happen if all the big entries are in the odd locations in the array and the smaller entries in the even locations. For details, see theorem 7.3, page 229.

External Sorting

Run: a sorted segment of the sequence.

A sorted sequence contains exactly one run.

Model: inherently sequential storage devices (tapes). The common external sort uses 3 tapes. The major cost is reading the tapes into memory.

“Pure” External sort.

A single pass:  

1. Copy runs from tape A alternating between  tape B and tape C.

2. Merge runs from tapes B and C into tape A.

At each pass the length of a run is doubled. Hence after at most (log2 n( Copy-Merge operations tape A will contain one run (will be sorted).

Practical variation (reduce the number of passes…): Copy k records to memory, sort them and write to tape B. Repeat alternating between tape B and C. After tape A is exhausted merge the runs back into tape A.

Example:

928   205   714   693   332     13   227   128   

944   773   374   569   207   576   725   548   

761   449   726   748   585   295   194   718   

This “tape” contains 14 runs. Shortest run has 1 number and longest has 3. External sorting this tape (copying 4 items to memory and sorting them, for demonstration purposes only):

Tape B: 

205 693  714  928  374  569  773  944
449   726  748  761
Tape C: 

13  128   227   332  207   548  576   725   

194   295   585   718 

Merge to tape A:

13 128  205  227  332  693  714  928 207  374 
548  569  576 725  773  944 194   295   449 585   718 726  748  761

tape A contains now only 3 runs. We can now distribute the runs among tapes B and C, merge them back into two runs on A. In one more pass tape A will be sorted.

Note: if we had more tapes we could save passes. For instance, in the last phase having 3 runs on A and 3 additional tapes we could sort the data in 1 pass.

Priority Queues, Heap-Sort

Implementing using a complete binary tree. 

Complete binary tree: 

1. Every node except leaves, has two children.

2. All leaves are “left justified”.

Implementation: Array. Left child of A[i] is in A[2i+1] right child in A[2i + 2].

Root holds the object with highest priority.

Up-Heap bubbling.

Insert at the end, bubble up.

Example :   

15,  19,  13,  23, 8, 5, 12, 10, 16, 11

15, 19, 13  (parent  15, CEX(3,1))

13, 19, 15

13, 19, 15, 23  (parent 19, CEX(4,2))

13, 19, 15, 23

13, 19, 15, 23, 8 (parent 19, CEX(5,2))

13, 8, 15, 23, 19, (parent 13, CEX(2,1))

 8,13, 15, 23, 19

8,13, 15, 23, 19, 5  (parent 19 CEX(6,3))

8,13, 5, 23, 19, 15  (parent 8 CEX(3,1))

5,13, 8, 23, 19, 15  

5, 8, 13, 15, 23, 19, 12, 10, 16, 11

5, 8, 12 15, 23, 19, 13, 10, 16, 11

5, 8, 12, 10, 23, 19, 13, 15, 16, 11

5, 8, 12, 10, 23, 19, 13, 15, 16, 11

5, 8, 12, 10, 11, 19, 13, 15, 16, 23

A single Heap (the red portion) grows step by step until it accommodates all data.




          5

8         12

  

   10

   11

  19

13

    
15

  16      23  

Analysis: If there are currently 20 nodes in the heap to insert the 21-st node we execute:

CEX(21,10)   CEX(10,5)   CEX(5,2)  CEX(2,1)

Note that:
4= (log 21( 

In general: if there are currently m-1 nodes in the heap it will take  (log m(  CEX’s to insert the m-th node into the Heap in the worst case. In this approach, we always have a Heap (the red part of our demo) and in each step we increase the size of the Heap by 1 node.

The total number of CEXs performed will thus be:

log 1 + log 2 + log 3 + … + log n = O(nlog n)

1. log 1 + log 2 + log 3 + … + log n ( nlogn

2. log 1 + log 2 + log 3 + … + log n ( 

   n/2 log n/2 = n/2 (log n – 1) = (nlog n)/2 – n/2 = O(nlog n)/2 = O(nlog n).

Heap-Sort-in-Place.

Sorting : 

1. heap = new  Build-heap(s);

2. int m = heap.size();

3. while (m > 1){

4. exchange  (1,  m--);

5. siftDown(1,m);

}

Example:

5, 8, 12, 10, 11, 19, 13, 15, 16, 23

23, 8, 12, 10, 11, 19, 13, 15, 16, 5

8, 23, 12, 10, 11, 19, 13, 15, 16, 5

8, 10, 12, 23, 11, 19, 13, 15, 16, 5

8, 10, 12, 15, 11, 19, 13, 23, 16, 5

16 ,10, 12, 15, 11, 19, 13, 23, 8, 5

10, 16, 12, 15, 11, 19, 13, 23, 8, 5

10, 11, 12, 15, 16, 19, 13, 23, 8, 5 
23, 11, 12, 15, 16, 19, 13, 10, 8, 5

11, 23, 12, 15, 16, 19, 13, 10, 8, 5

11, 15, 12, 23, 16, 19, 13, 10, 8, 5

13, 15, 12, 16, 23, 19, 11, 10, 8, 5

12, 15, 13, 16, 23, 19, 11, 10, 8, 5

Analysis: the while loop executes exactly m times. Each time it calls siftDown which executes at most log m CEXs. Hence the total executing time of the HeapSort is O(nlog n).

Bottom-up Heap construction.

Builds a heap in O(n) steps. It starts with many small heaps, then merges them into larger and larger heaps until all heaps are merged into a single heap.

The number of CEX’s executed when inserting node v at height d is at most d.

We associate with every node v a path p(v) defined as follows: “step right then go left, all the way to the leaf”.

This is not the path followed by v when v is inserted, but it has the same length. Two distinct paths never share an edge!!! Thus the total path length is the number of edges in the tree which is n-1. Thus it takes O(n) steps to construct the heap Bottom-Up.
Selection

(Interaction of data structures and design of algorithms).

Problem: given a collection of n objects. Find the k-th largest object. (6.4.1 and 7.7.6)

1A: read the objects into an array, sort the array

      and return the k-th entry.

 Analysis: as long as it takes to sort the array.

1B: Read k elements into an array and sort them. 

       Each subsequent object is compared with 

       The k-th object in the array. If smaller, 

       It is discarded. If bigger, the k-th (last) 

       Object is removed and the element is 

      “inserted” into the sorted array.

Analysis: Running time: Sort(k) + O(N*k). 

6A: Build a heap (O(n)). 

       Perform k deletions. The k-th deleted object

       Is the answer.

Analysis:  O(n) to build the heap. K*logN

   Deletions, each takes O(N) for a total of:

   O(N + k*logN). Hardest case: k = n/2. We get

   O(N*logN).

6B. Build the heap with the first k objects.

       Compare each subsequent object with the


“top” of the heap. Discard if smaller, replace

       with top and “heapify” if bigger.

Analysis: each heapify takes O(logk). The

      Original heap construction takes O(k). 

      We perform (N-k) “heapifies” so again we

      have (if k = N/2) O(NlogN) running time.

7A. Use the Quick Sort idea. Partition and return

       m, the pivot location. 

If m =k we are done.

If m > k return select(A, 1,m,k)

Else return select(A, m+1, N, k)

Analysis:  Average: O(N).

Trees

Nodes (vertex - vertices)

Edge (link)

Parent/Child

Subtree

Path

Rooted trees: tress in which a particular node is distinguished (root).

A childless node is a leaf (end vertex).

Recursive definition of a rooted tree: 

Page 100 Figure 4.1 

Depth of a vertex:  length of path from root. Root has depth 0, its immediate children have depth 1 etc. The height of a node is the longest length of a path to a leaf. The height of a leaf is 0.

