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Evaluation of Certain Legendre Symbols

David Angell

Abstract. We state and prove an apparently hitherto unrecorded evaluation of certain Legendre

symbols: if p is prime, p 6= 2, and ab = p − 1, then the Legendre symbol
(

b
p

)
is given by(

b

p

)
= (−1)da/2ebb/2c.

1. INTRODUCTION. Suppose that p is prime, p 6= 2, and b is not a multiple of
p (these conditions will apply throughout this note). We say that b is a quadratic
residue modulo p if the congruence x2

≡ b (mod p) has a solution, and we define the
Legendre symbol(

b

p

)
=

{
1 if b is a quadratic residue modulo p
−1 if not.

Many elementary results are known which facilitate the efficient evaluation of Leg-
endre symbols; the present note offers a very elegant equality which appears to have
escaped notice.

We begin with Gauss’ lemma, which may be formulated as follows. A proof will
be found in almost any standard number theory text and therefore none is given here.

Lemma (Gauss, 1808). Suppose that p is prime, p 6= 2, and b is not a multiple of p.
For k = 1, 2, . . . , (p − 1)/2, write mk = kb, and let mk be the least positive residue
of mk modulo p. Then (

b

p

)
= (−1)n,

where n is the number of k for which mk exceeds (p − 1)/2.

The Legendre symbol
(

b
p

)
may be evaluated systematically by means of the fol-

lowing algorithm, though commonly the attentive calculator will find many short cuts.
First reduce b modulo p, so that we may assume 0 < b < p; then factor b as a product
of primes and use the total multiplicativity of the Legendre symbol,(

b

p

)
=

(
b1b2 · · · bk

p

)
=

(
b1

p

)(
b2

p

)
· · ·

(
bk

p

)
.

On the right-hand side, any Legendre symbols with b j = 2 are found from the result(
2

p

)
=

{
1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8);
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for other (prime) values of b j we apply the celebrated theorem of quadratic reciprocity
to write(

b j

p

)
= −

(
p

b j

)
if b j ≡ p ≡ 3 (mod 4), and

(
b j

p

)
=

(
p

b j

)
otherwise.

We now have a product of Legendre symbols in which all the “denominators” b j are
less than the original p, and following the same procedure recursively will ultimately
complete the evaluation.

2. A CONSEQUENCE OF GAUSS’ LEMMA. In an undergraduate number theory
class, a worked example on evaluating Legendre symbols came down to the ques-
tion of finding

(
10
31

)
. A student, Daniel Apin, proposed using Gauss’ lemma to eval-

uate this. I demurred, suggesting that it would be easier to begin with the equality(
10
31

)
=
(

2
31

) (
5
31

)
. Daniel pointed out, however, that the first fifteen multiples of 10,

when reduced modulo 31, form a clear and simple pattern

10, 20, 30, 9, 19, 29, 8, 18, 28, 7, 17, 27, 6, 16, 26

which makes it very easy to apply Gauss’ lemma and obtain
(

10
31

)
= (−1)10

= 1. The
present note generalises this observation.

Theorem. Suppose that p is prime, p 6= 2, and a, b are positive integers with ab =
p − 1. Then (

b

p

)
= (−1)da/2ebb/2c, (1)

where for any real number x we write dxe for the least integer n ≥ x and bxc for the
greatest integer n ≤ x.

Proof. We use Gauss’ lemma, considering the numbers mk = kb for k = 1, 2, . . . ,
ab/2 (of course ab is even). Dividing each k by a to obtain a slightly unconventional
quotient and remainder, we have k = aq + r with

q = 0, 1, 2, . . . ,
⌊b

2

⌋
− 1 and r = 1, 2, . . . , a

or

q =
⌊b

2

⌋
and r = 1, 2, . . . ,

ab

2
− a

⌊b

2

⌋
.

The latter case occurs only if b is odd and then we have

r ≤
ab

2
− a

(
b − 1

2

)
=

a

2
.

Reducing mk = (aq + r)b modulo p gives

mk = rb − q,
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observing that the right-hand side is indeed the least positive residue of mk because it
satisfies the inequalities

rb − q ≥ b −
⌊b

2

⌋
≥ 0 and rb − q ≤ ab < p.

Now if r ≤ a/2 then

mk ≤
ab

2
− q ≤

ab

2
=

p − 1

2
,

while if r > a/2 then

mk ≥

(
a

2
+

1

2

)
b − q >

(
a

2
+

1

2

)
b −

⌊b

2

⌋
≥

ab

2
=

p − 1

2
,

noting that the second inequality is strict since this case never occurs for q = bb/2c.
So the number of multiples of b for which mk > (p − 1)/2 is(

a −
⌊a

2

⌋) ⌊b

2

⌋
=

⌈a

2

⌉⌊b

2

⌋
,

and the result follows.

3. COROLLARIES. Various standard and almost standard results can be proved
anew by using this theorem. First,(

−1

p

)
=

(
p − 1

p

)
= (−1)d1/2eb(p−1)/2c

= (−1)(p−1)/2.

This is usually proved as an immediate consequence of Euler’s criterion(
a

p

)
≡ a(p−1)/2 (mod p).

Next, (
2

p

)
= (−1)d(p−1)/4e

=

{
1 if p ≡ ±1 (mod 8)
−1 if p ≡ ±3 (mod 8).

The latter equality follows from the former by considering separately the four possi-
bilities for p modulo 8. That we can easily deduce this from (1) is not surprising, as
the customary proof employs Gauss’ lemma in much the same way as we did in our
proof of (1). Furthermore, if b = 4k + 1 is a factor of p − 1 then(

b

p

)
= (−1)da/2e(2k)

= 1;

this result is immediately clear from quadratic reciprocity if b is prime, but takes a
moment’s thought if not. Finally, if 4k is a factor of p − 1 then(

k

p

)
=

(
4k

p

)
= (−1)da/2e(2k)

= 1,
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which again may alternatively be proved by using quadratic reciprocity and the known

value of
(

2
p

)
.

To conclude, we show that our main theorem also holds for negative values of a and
b. First, if a, b are any integers then⌈a

2

⌉⌊b

2

⌋
−

⌈
−a

2

⌉⌊
−b

2

⌋
(2)

is even if ab is a multiple of 4, odd if ab is a multiple of 2 but not of 4. To see this
write

a = 2c + x, b = 2d + y,

where c, d are integers and x, y ∈ {0, 1}. Then the expression (2) is

(c + x)d − (−c)(−d − y) = dx − cy.

If ab is a multiple of 4 then either x = y = 0; or x = 0, c is even; or y = 0, d is even.
In each case (2) is even. If ab is a multiple of 2 but not of 4, then either x = 0, c is
odd, y = 1; or x = 1, d is odd, y = 0. In each case (2) is odd, and our first claim is
proved. Consequently, if a, b are negative and ab = p − 1, then⌈a

2

⌉⌊b

2

⌋
−

⌈
−a

2

⌉⌊
−b

2

⌋
and

p − 1

2

have the same parity and so(
b

p

)
=

(
−1

p

)(
−b

p

)
= (−1)(p−1)/2(−1)d−a/2eb−b/2c

= (−1)da/2ebb/2c,

as we have already shown for positive a and b.
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An Elementary Counterexample in the
Compact-Open Topology

Jonathan Groves

Abstract. We give a short proof that the space of continuous functions from [0, 1] to [0, 1] is
not compact in the compact-open topology.

Suppose X and Y are compact topological spaces. Let C(X, Y ) be the space of con-
tinuous functions from X to Y , and give this space the compact-open topology. An
interesting problem from topology is to prove or disprove that C(X, Y ) is compact.
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