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NOTES
Edited by Sergei Tabachnikov

Vector Analysis Proof of Erdős’
Inequality for Triangles

Akira Sakurai

Abstract. We define a new concept, the “1/2-power of plane vectors,” and use it to provide
another proof of Erdős’ inequality for triangles.

1. INTRODUCTION. Let 4ABC be a triangle and O a point in it. Let the distances
from O to vertices A, B and C be p, q and r , and let those to sides BC,CA and AB be
u, v and w. Erdős’ inequality for triangles then asserts that

p + q + r ≥ 2(u + v + w)

with equality holding if and only if the triangle is equilateral and O is its center.
A number of authors have given proofs for this inequality using different tools.

Kazarinoff’s proof [3] uses Pappus’ Theorem, and Avez’s proof [2] needs Ptolemy’s
Theorem. However, a paper by Alsina and Nelsen [1] provides a simple, elementary
proof. Most notably, Kusco [4] requires only trigonometric functions in achieving his
short proof. We recently provided a proof of the inequality in [5] using “1/2-power of
plane vectors,” a concept that we originated.

Our examination of the equality condition in [5] was insufficient, and [5] is only
available in Japanese. Therefore, we offer our proof here after revising the last part
using an argument suggested by T. Kambayashi.

2. NOTATION. Let a = (a1, a2) and b = (b1, b2) represent plane vectors through-
out. We will regard these as a = (a1, a2, 0) and b = (b1, b2, 0) in R3. For any a =
(a1, a2, 0) = (a cos θa, a sin θa, 0), define

a1/2
:= (a1/2 cos(θa/2), a1/2 sin(θa/2), 0) (1)

and likewise for b = (b cos θb, b sin θb, 0). We begin with two lemmas.

Lemma 2.1.

(a) a1/2
· a1/2

= a = |a|.
(b) a× b = 2(a1/2

· b1/2)(a1/2
× b1/2).

(c) |a− b| ≥ 2|a1/2
× b1/2

|, with equality holding if and only if |a| = |b|.
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Proof. The proof of (a) is clear. (b) Let θ := θb − θa . Then

a× b = (0, 0, ab sin θ) = (0, 0, 2ab sin θ

2 cos θ

2 ),

a1/2
· b1/2

= a1/2b1/2 cos θ

2 , and

2(a1/2
× b1/2) = (0, 0, 2a1/2b1/2 sin θ

2 ),

so the second scalar times the third vector equals a× b.

(c) Since |a − b|2 = a2
+ b2

− 2ab cos θ ≥ 2ab(1 − cos θ) = 4ab sin2( θ2 ) =

4|a1/2
× b1/2

|
2, it follows that |a− b| ≥ 2a1/2b1/2

| sin( θ2 )|. The inequality arises
from a2

+ b2
≥ 2ab, and this becomes an equality if and only if a = b. We

thus have (c).

Lemma 2.2. Let a 6= b be nonzero vectors, let O be the origin, and 4OPQ a tri-

angle such that a =
−→
OP and b =

−→
OQ. The distance h of O to the line PQ satisfies the

following:

(d) h =
|a× b|
|a− b|

≤ |a1/2
· b1/2
|, with equality holding if and only if |a| = |b|.

We remark that one is tempted to just call h “the distance from O to a− b.”

Proof. The area of the parallelogram spanned by a and b is |a × b|, which equals
|a− b| · h. The equality is therefore clear. Next, by (b) and (c) in Lemma 2.1, we have

h = 2|a1/2
· b1/2
||a1/2

× b1/2
|/|a− b| ≤ |a1/2

· b1/2
|.

Equality holds if and only if (c) is an equality, which happens if and only if |a| = |b|.

3. PROOF OF ERDŐS’ INEQUALITY. Using the previously defined notations,
we further denote that

−→
O A = p = (p cos θp, p sin θp, 0),

−→
O B = q = (q cos θq, q sin θq, 0),

and

−→
OC = r = (r cos θr , r sin θr , 0).

Also, without loss of generality, we may and shall assume in the rest of the paper that
O = (0, 0, 0),A = (p, 0, 0),B = (b1, b2, 0) with b2 > 0, and C = (c1, c2, 0) with
c2 < 0. It follows that

θp = ∠AOA = 0, 0 < θq = ∠AOB < π,

and

π < θr = ∠AOC < 2π,
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so that

0 < θq − θp < π, 0 < θr − θq < π, and π < θr − θp < 2π. (2)

We now turn to proving Erdős’ inequality. From Lemma 2.1(a), Lemma 2.2(d) and (2)
above, we have

p + q + r − 2(u + v + w)

≥ p1/2
· p1/2

+ q1/2
· q1/2

+ r1/2
· r1/2

−2q1/2
· r1/2
+ 2p1/2

· r1/2
− 2p1/2

· q1/2

= |p1/2
− q1/2

+ r1/2
|
2
≥ 0.

(3)

It follows that

p + q + r ≥ 2(u + v + w), (4)

which is Erdős’ inequality, as desired.

Next, we establish the condition for the equality to hold in (4) (i.e., for the two
inequalities in (3) to both be equalities). The first of the two inequalities in (3) is
due to the three inequalities u ≤ |q1/2

· r1/2
|, v ≤ |p1/2

· r1/2
| and w ≤ |p1/2

· q1/2
|.

These three all depend upon Lemma 2.2(d), and the equality condition there implies
p = q = r . We therefore conclude that the first inequality of (3) is an equality if and
only if vertices A, B,C lie on a circle centered at O . Let us assume that this condition
holds for the remainder of this note.

Now consider the second inequality of (3). Clearly, this becomes an equality if and
only if q1/2

= p1/2
+ r1/2, where |p1/2

| = |q1/2
| = |r1/2

| and arg(p1/2) = 0. Hence, one
sees at once that p1/2 and r1/2 generate a parallelogram with all four sides equal, where
q1/2 is its diagonal, also of equal size. We conclude that the condition for the equality
in (4) is that tips A, B, and C of the vectors p, q, r rooted at O form an equilateral
triangle with its center at O .
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3. D. K. Kazarinoff, A simple proof of the Erdős-Mordell Inequallity for triangles, Michigan Math. J. 4

(1957) 97–98; available at http://dx.doi.org/10.1307/mmj/1028988998.
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