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which again may alternatively be proved by using quadratic reciprocity and the known
value of (%)

To conclude, we show that our main theorem also holds for negative values of a and
b. First, if a, b are any integers then
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is even if ab is a multiple of 4, odd if ab is a multiple of 2 but not of 4. To see this
write
a=2c+x, b=2d+y,
where ¢, d are integers and x, y € {0, 1}. Then the expression (2) is
(c+x)d —(—c)(—d —y) =dx —cy.

If ab is a multiple of 4 then either x = y = 0; orx = 0, cis even; or y = 0, d is even.
In each case (2) is even. If ab is a multiple of 2 but not of 4, then either x = 0, ¢ is
odd, y=1;0orx =1, d is odd, y = 0. In each case (2) is odd, and our first claim is
proved. Consequently, if a, b are negative and ab = p — 1, then
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have the same parity and so

(é) — <__1> <__b> — (_1)(17*1)/2(_1)[*0/21L*b/ZJ — (_I)Fa/ZMb/ZJ’
p p p

as we have already shown for positive a and b.
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An Elementary Counterexample in the
Compact-Open Topology

Jonathan Groves

Abstract. We give a short proof that the space of continuous functions from [0, 1] to [0, 1] is
not compact in the compact-open topology.

Suppose X and Y are compact topological spaces. Let C(X, Y) be the space of con-
tinuous functions from X to Y, and give this space the compact-open topology. An
interesting problem from topology is to prove or disprove that C(X, Y) is compact.
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What is the compact-open topology on C(X, ¥Y)? Let C be a compact subset of X
and U an open subset of Y. Let S(C, U) be the set of all functions f € C(X, Y) such
that f(C) C U. Then the sets S(C, U) form a subbasis of the compact-open topology
onC(X,7Y).

It turns out that C(X, Y) need not be compact even if X and Y are. This is known to
experts, but not found in elementary texts such as [1], [2], and [3]. The purpose of this
note is to provide an elementary counterexample; all we need is the intermediate value
theorem. In our counterexample, we let X = Y = I, the closed unit interval [0, 1] with
the usual subspace topology inherited from R. A common proof that C(/, I) is not
compact notes that the compact-open topology agrees with the uniform topology on
C(I, I and that the sequence ( f;) defined by f, (x) = x" has no uniformly convergent
subsequence since the limiting function is not continuous.

For our proof, picke < 1/2. Forx € I,letU, = S({x}, (x —€,x +€) N I). These
sets form an open cover of C(/, I') because, by the intermediate value theorem, every
continuous function from 7 to [ has a fixed point. We now prove that this open cover
has no finite subcover. Let U,,, U,,, ..., Uy, be a finite subcollection of this open
cover and, without loss of generality, assume x; < x; < --- < x,,. Since € < 1/2, no
set Uy, covers C(I, I). Choose y; € I \ (x; —€,x; +¢€) foralli =1,2,...,n. Let f
be the piecewise linear function connecting (0, f(0)), (xy, y1), (X2, ¥2), - - -, (Xn, Y0),
and (1, f(1)), where f(0) is taken to be O if x; # 0 and f(1) is taken to be 1 if
x, # 1. Then it is clear that f & U,, for all i, but f € C(I, I), which proves that
this finite subcollection does not cover C(I, I). Thus, C({, I') is not compact in the
compact-open topology.

I like this proof because it is a good illustration of the definitions of compactness
and the compact open topology, and is a good application of the intermediate value
theorem. A comparison of both this proof and the more common proof should be
valuable to students.
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Editor’s Note: Jonathan Groves passed away on June 4, 2011 at the age of 29 before
this note was accepted. The MONTHLY thanks a colleague of Jonathan’s, who wishes
to remain anonymous, who saw the note through revisions and proofs. We extend our
deepest condolences to Jonathan’s family.
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