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Arithmetic Polygons

Robert Dawson

Abstract. We consider the question of the existence of equiangular polygons with edge lengths
in arithmetic progression, and show that they do not exist when the number of sides is a power
of two and do exist if it is any other even number. A few results for small odd numbers are
given.

An Olympiad problem [1] asked the following.

Prove that there exists a convex 1990-gon with the following two properties:

(a) all angles are equal.
(b) the lengths of the 1990 sides are the numbers 12, 22, 32, . . . , 19902 in

some order.

Recently, remembering the question imperfectly, I constructed a convex 1990-gon
with side lengths 1, 2, 3, . . . , 1990, and wondered for which other N such an N -gon
could be constructed. This note gives a partial answer. Define an arithmetic polygon to
be an equiangular polygon with edge lengths forming (upon suitable rearrangement) a
nondegenerate arithmetic sequence.

Lemma 1. For any N, if there exists an arithmetic N-gon, there exists one such with
edge lengths 1, 2, . . . , N.

Proof. We work in the complex plane, so that an edge of length L oriented at an angle
θ to the positive real axis is represented by the complex number Leiθ . An equiangular
N -gon has edge orientations (in cyclic order) e2( j/N )π i , and edge lengths a + p( j)b
for some permutation p : (0, 1, . . . , n − 1)→ (0, 1, . . . , n − 1). This polygonal path
closes if and only if

N−1∑
j=0

(a + p( j)b)e2( j/N )π i
= 0.

But we know (this is equivalent to the existence of regular N -gons) that

N−1∑
j=0

e2( j/N )π i
= 0,

so

N−1∑
j=0

(p( j)+ 1)e2( j/N )π i
= 0.
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Theorem 2. For any even N not a power of 2, and any positive real a, b, there ex-
ists a convex arithmetic N-gon with sides (in some order) {a, a + b, a + 2b, . . . ,
a + (N − 1)b}.

Proof. We first consider the case in which N = 4k + 2 for some k. There is clearly a
nonconvex arithmetic (4k + 2)-gon in the complex plane with edges, in order,(

−(a + (2k + 1)b), a,−(a + (2k + 2)b)e2π i/(2k+1), (a + b)e2π i/(2k+1), . . . ,

−(a + (2k + j + 1)b)e2 jπ i/(2k+1), (a + jb)e2 jπ i/(2k+1), . . . ,

−(a + (4k + 1)b)e4kπ i/(2k+1), (a + 2kb)e4kπ i/(2k+1)
)

(see Figure 1a).
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Figure 1. Construction of an arithmetic polygon with 4k + 2 sides.

To see that this closes, we group the edges in consecutive pairs, and note that

(a + (2k + j + 1)b)e2 jπ i/(2k+1)
− (a + jb)e2 jπ i/(2k+1)

= (2k + 1)be2 jπ i/(2k+1)

and the values taken by the right-hand side are the sides of a regular 2k + 1-gon.
As shown in Figure 1b, we can rearrange the edges to obtain a convex arithmetic
(4k + 2)-gon.

Any other even N that is not a power of 2 has a factor of the form 4k + 2, k > 0.
We break the arithmetic sequence {a, a + b, a + 2b, . . . , a + (m − 1)b} apart into
N/(4k + 2) arithmetic sequences of length 4k + 2. For each of these, we construct a
convex arithmetic polygon Pj , j = 0, 1, . . . , N/(4k + 2) − 1. We rotate each Pj by
an angle of 2 jπ i/N to obtain P ′j , and construct a new polygon

⊕N/(4k+2)−1
j=0 P ′j (the

Minkowski sum, see for instance Moszynska [2, p. 66]) by interleaving the edges of
the rotated polygons P ′j in order of orientation (see Figure 2).

What about N -gons for which N is either odd or a power of 2? By trying to sketch
an arithmetic quadrilateral or octagon, the reader should be able to get most of the
ideas motivating the following negative result.

Theorem 3. There does not exist an equiangular 2n-gon with integer edge lengths, all
distinct.

Proof. We prove this by induction; clearly it is true for n = 2. Suppose that it is true
for n, and let P be a 2n+1-gon in the complex plane, with edges, in cyclic order, given
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a+b, a+3b, a+5b, . . .

(a) (b) (c)

a, a+2b, a+4b, . . .

Figure 2. Interleaving edges of arithmetic (4k + 2)-gons to obtain an arithmetic ((2k + 1)2n)-gon.

by {P(k)ekπ i/2n
: 0 ≤ k < 2n

}, where P(k) : {1, . . . , 2n
} → N is one-to-one. Compute

the sum of the even-numbered edges and the sum of the odd-numbered edges:

p0 =

2n−1∑
k=0

P(2k)e2kπ i/2n
, p1 =

2n−1∑
k=0

P(2k + 1)e(2k+1)π i/2n
.

By hypothesis, neither p0 nor p1 can equal 0. Moreover, we have that

p0 ∈ Q[eπ i/2n−1
], p1 ∈ eπ i/2nQ[eπ i/2n−1

], and p0 + p1 = 0.

We would conclude that eπ i/2n
∈ Q[eπ i/2n−1

], so that Q[eπ i/2n
] = Q[eπ i/2n−1

]. But this
is well-known to be false (for instance, the dimension over Q of the first field is 2n−1

while that of the second is 2n−2.) Thus the theorem holds for n + 1, and by induction
for all n ∈ N.

Lemma 1 gives us an immediate corollary.

Corollary 3.1. There are no arithmetic 2n-gons.

We are left with the case in which the number of sides is odd. It has been known
since antiquity that every equiangular triangle is equilateral (this follows immediately
from Euclid I.6); but this is easily seen not to be true for other equiangular 2k + 1-gons.
For larger k, let consecutive edge lengths be (a−k, . . . , a−1, a0, a1, . . . , ak). Projecting
onto a line perpendicular to edge 0 gives

k∑
j=1

a j sin(2π j/(2k + 1)) =
k∑

j=1

a− j sin(2π j/(2k + 1)),

or

k∑
j=1

(a j − a− j ) sin(2π j/(2k + 1)) = 0.

Proposition 4. Every equiangular pentagon with rational edges is regular.
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Proof. Let di := ai − a−i . For any choice of “edge 0” we have

d2 sin(4π/5) = −d1 sin(2π/5).

As sin(2π/5)/ sin(4π/5) = τ is irrational, this can only be solved over the integers if
a1 = a−1 and a2 = a−2. Letting each edge in turn be “edge 0,” the conclusion follows.

By Lemma 1 we obtain the following.

Corollary 4.1. There are no arithmetic pentagons.

Extending the same idea yields the following.

Proposition 5. Every equiangular heptagon with constructible edges is regular.

Proof. For any choice of “edge 0” we have

d1 sin(2π/7)+ d2 sin(4π/7)+ d3 sin(6π/7) = 0,

which by the double- and triple-angle formulae reduces to

sin(2π/7)[d1 + 2d2 cos(2π/7)+ d3(4 cos2(2π/7)− 1)] = 0,

so that

4d3[cos(2π/7)]2 + 2d2[cos(2π/7)] + (d1 − d3) = 0.

But cos(2π/7) is well-known not to be constructible (see almost any senior under-
graduate textbook on geometry or abstract algebra), and the set of constructible num-
bers is (essentially by definition) closed under degree 2 extensions; so we must have
d1 = d2 = d3 = 0.

Corollary 5.1. There are no arithmetic heptagons.

It is tempting to conjecture that the same results hold for any equiangular polygon
with an odd number of sides. However, interleaving (for instance) the edges of three
equilateral triangles of different edge lengths, two of them rotated by ±20◦ with re-
spect to the third, gives an equiangular but non-regular enneagon. We close with the
following two conjectures.

Conjecture 6. Every equiangular polygon with a prime number of edges, all rational,
is regular.

Conjecture 7. No arithmetic N-gon exists for any odd N.

ACKNOWLEDGMENTS. I would like to acknowledge financial support from an NSERC Discovery Grant,
and the helpful suggestions of the anonymous referees.

REFERENCES

1. 31st International Mathematical Olympiad, available online at imo.math.ca/Exams/1990imo.html
(2/15/2011)
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