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Generating Functions

With every sequence an we can associate a power
series:

f (x) =
∞∑

i=0

anxn

and vice versa, every power series expansion of a
function f (x) gives rise to a sequence an.

Are there any uses of this relationship in counting?

In this section we shall explore the interaction among
polynomials, power series and counting.
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Definition
The function f (x) =

∑∞
n=0 anxn is the genrating function of the

sequence an.

The funciton f (x) =
∑∞

k=0
ak xk

k! is the exponential generating
function of the sequence ak .

Examples:

The generating function of the sequence 1,1,1, . . .
is:

∑∞
n=0 xn = 1

1−x .

The generating function of 1,−1,1,−1 . . .
is:

∑∞
n=0(−1)nxn = 1

1+x .

If f (x) =
∑∞

n=0 anxn, g(x) =
∑∞

n=0 bnxn then:

f (x)g(x) =
∑∞

n=0 cnxn where cn =
∑n

k=0 akbn−k
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Examples

1 Let us start with an example we visited before: how many different
solutions in non-negative integers does the equation
x + y + z + t = 27 have?

2 Consider the function f (x) = (1 + x + x2 + . . . x27)4.
3 It is not difficult to see that the coefficient of x27 is the answer, but

how easy is it to calculate it?
4 Well, if you have a nice math program, it will be very easy.
5 But we can do better, Consider the function g(x) = (

∑∞
i=0 x i)4.

6 Again, the coefficient of x27 in the Taylor expansion of this function
is the answer.

7 We noticed that
∞∑

i=0
x i = 1

1−x .

8 So the answer will be the coefficient of x27 in the expansion of:
(1− x)−4
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The generalized binomial coefficients

Recall: (1 + x)n =
∞∑

k=1

(n
k
)
xk .

Does this formula hold for all numbers n, like negative numbers,
fractions, irrationals?

Would it be nice if we could use an extended Binomial Coefficient and
write the answer: (

−4
27

)
or in general

(
−m
k

)
. Can we write:

(1 + x)α =
∞∑

n=0

(
α

n

)
xn

How can we use it for solving counting problems?
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Example

1 A box contains 30 red, 40 blue and 50 white balls. In how
many ways can you select 70 balls?

2 The coefficient of x70 in the product
(1 + x + . . .+ x30)(1 + x + . . .+ x40)(1 + x + . . .+ x50)

is the answer.
3 Note that:

(1 + x + . . .+ x30)(1 + x + . . .+ x40)(1 + x + . . .+ x50) =

1− x31

1− x
1− x41

1− x
1− x51

1− x = (1− x)−3(1− x31)(1− x41)(1− x51)

.
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Examples

All we need is to find the coefficient of x70 in:( ∞∑
i=0

(
−3
i

)
x i

)
(1− x31 − x41 − x51 + . . .)

which turns out to be 1061 once we understand the meaning of(
−3
i

)
.

Drill
Use this technique to find the number of distinct solution to:

x1 + x2 + x3 + x4 = 85

10 ≤ x1 ≤ 25, 15 ≤ x2 ≤ 30, 10 ≤ x3 ≤ 40, 15 ≤ x4 ≤ 25.
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The Generalized Binomial Theorem

Theorem (The generalized binomial theorem)

(1 + x)r =
∞∑

i=0

(
r
i

)
x i

(
r
i

)
=

r(r − 1) . . . (r − i + 1)
i!

Chứng minh.

Follows directly from Taylor’s expansion of (1 + x)r .

For negative integers we get:(
r
i

)
=

r(r − 1) . . . (r − i + 1)
i! = (−1)i

(
−r + i − 1
−r − 1

)

Drill
Show that: (1

2
k

)
=

(−1)k

4k

(
2k
k

)
.
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Derangements

Recall: an n-derangement is an n-permutation π = a1a2 . . . an in which
∀i : ai 6= i . If we denote the number of n-derangments by Dn then:

D1 = 0, D2 = 1 and Dn+1 = n(Dn + Dn−1).

Let: D(x) =
∞∑

n=0

Dn
xn

n! (the exponential generating function for Dn).

An easy calculation using the recurrence relation yields:
D′(x)
D(x) =

x
1− x −→ (ln D(x))′ = x

1− x

D(x) = e−x

1− x =
( ∞∑

k=0

(−1)k xk

k!
)( ∞∑

k=0

xk)
.

Or:
Dn
n! =

n∑
k=0

(−1)k

k! =⇒ Dn = n!
n∑

k=0

(−1)k

k!
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Catalan Numbers

Question
You need to calculate the product of n matrices A1 × A2 × . . .× An.
How do we parenthesize the expression to do it in the most economical
way?

Why does it matter?

Drill
Let A[m,n] denote an m × n matrix (m rows and n columns). For each
possible multiplication of the following product calculate the number of
multiplications of real numbers needed to calculate the product.

A[10,20]A[20,40]A[40,50]A[50,10]
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Catalan Numbers

Example

a. A× B × C can be parethesized in two different ways.
b. A× B × C × D can be parethesized in 5 different ways.
c. Let mn be the number of ways to properly parenthesize the product

of n + 1 matrices.
d. m1 = 1, m2 = 2, m3 = 5, mn =? (we set m0 = 1).
e. For k ≥ 0, A1A2 . . .An+1 can be parenthesized as:

[A1 . . .Ak ][Ak+1 . . .An+1] so the number of ways to further
parenthesize this product is mk−1mn−k .

f.

Hence : mn+1 =
n∑

i=0

mi ·mn−i
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Catalan Numbers

1. The generating function of the sequence mn is: A(x) =
∑∞

i=0 mix i

2. mn+1 =
∑n

i=0 mi ·mn−i =⇒ mn+1xn+1 = x
(∑n

i=0 mi ·mn−i
)
xn.

3.
∑∞

i=0 mn+1xn+1 = 1 +
∑∞

k=0 mk · xk

4. A2(x) =
∑∞

k=0 bixk bk =
∑k

j=0 mj ·mk−j

5. Combining 2, 3 and 4 we get:
1 + A(x) = xA2(x).

6. This is a quadratic equation in the unknown A(x) yielding:
2xA(x) = 1±

√
1− 4x

7. Since 2xA(x) = 0 when x = 0 we have:

A(x) = 1
2x (1−

√
1− 4x).
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Catalan Numbers

Or:

Substituting the initial condition m0 = A(0) = 0 we get:

A(x) = 1
2x (1−

√
1− 4x)

.

(1− 4x)
1
2 =

∞∑
k=0

(
1/2
k

)
(−4)kxk =

∞∑
k=0

(
2k
k

)
xk

(
Using :

(1/2
k
)
= (−1/4)k(2k

k
))

.

mn is the coefficient of xn in the expansion of: (1−
√

1− 4x)/(1/2x)
A simple calculation yields:

mn =
1

n + 1

(
2n
n

)
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Lattice walks

Question
Given a lattice. In how many ways can you walk from (0,0) to (n,n) if
you can only move to the right or up?

Answer
The ansewr to this question is easy: you have to make 2n moves. n
horizontal moves and n vertical. Any combination of such moves will be
a walk from (0,0)→ (n,n)

So the answer is: (
2n
n

)
Question
The same question but this time your walk is restricted to stay below
the diagonal.
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(n,n)

(0,0)
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Question
A minor change: We want to count the number of moves that stay
below the diagonal.

Answer

It may not look clear how to construct a solution, a recurrence
relation, or just solve it.
Every walk is a sequence x1, x2, . . . x2n of moves where xi is either
move right or move up.
To stay below the diagonal, for each k the subsequence
x1, x2, . . . xk must have at least as many right-moves as up-moves.
But we already counted such sequences!
Balanced parenthesis (()(()())), (:→) : ↑ .
So the number of walks is the Catalan number m2n.
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Other counting problems can be solved by “mapping” them to solved
problems.

How many binary sequences b1b2b3 . . . b2n consisting of n 1’s and
n 0’s are there in which

∑k
i=1 bi ≥ dk

2e ∀k ≥ 1?

n Persons line up to buy tickets to the theater. The cost of a ticket
is 50,000 VND. Each person has a 50,000 VND or a 100,000
VND. The cashier opens the box office with no money. So if the
first person has a 100,000 VND the line will get stuck as the
cashier will not be able to give him change. In how many ways can
n persons arrange the line so all of them will be able to buy tickets
with no delays?
We need to assume that at least dn

2e have a 50,000 VND note.
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