Generating Functions

Ngày 17 tháng 11 năm 2012

Generating Functions

With every sequence a_{n} we can associate a power series:

$$
f(x)=\sum_{i=0}^{\infty} a_{n} x^{n}
$$

and vice versa, every power series expansion of a function $f(x)$ gives rise to a sequence a_{n}.

Generating Functions

With every sequence a_{n} we can associate a power series:

$$
f(x)=\sum_{i=0}^{\infty} a_{n} x^{n}
$$

and vice versa, every power series expansion of a function $f(x)$ gives rise to a sequence a_{n}.

Are there any uses of this relationship in counting?

Generating Functions

With every sequence a_{n} we can associate a power series:

$$
f(x)=\sum_{i=0}^{\infty} a_{n} x^{n}
$$

and vice versa, every power series expansion of a function $f(x)$ gives rise to a sequence a_{n}.

Are there any uses of this relationship in counting?
In this section we shall explore the interaction among polynomials, power series and counting.

Definition

The function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the genrating function of the sequence a_{n}.
The funciton $f(x)=\sum_{k=0}^{\infty} \frac{a_{k} x^{k}}{k!}$ is the exponential generating function of the sequence a_{k}.

Examples:

The generating function of the sequence $1,1,1, \ldots$ is:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Definition

The function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the genrating function of the sequence a_{n}.
The funciton $f(x)=\sum_{k=0}^{\infty} \frac{a_{k} x^{k}}{k!}$ is the exponential generating function of the sequence a_{k}.

Examples:

The generating function of the sequence $1,1,1, \ldots$ is:

$$
\sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}
$$

Definition

The function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the genrating function of the sequence a_{n}.
The funciton $f(x)=\sum_{k=0}^{\infty} \frac{a_{k} x^{k}}{k!}$ is the exponential generating function of the sequence a_{k}.

Examples:

The generating function of the sequence $1,1,1, \ldots$ is: $\quad \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$.
The generating function of $1,-1,1,-1 \ldots$ is: $\quad \sum_{n=0}^{\infty}(-1)^{n} x^{n}=\frac{1}{1+x}$.

Definition

The function $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}$ is the genrating function of the sequence a_{n}.
The funciton $f(x)=\sum_{k=0}^{\infty} \frac{a_{k} x^{k}}{k!}$ is the exponential generating function of the sequence a_{k}.

Examples:

The generating function of the sequence $1,1,1, \ldots$ is: $\quad \sum_{n=0}^{\infty} x^{n}=\frac{1}{1-x}$.
The generating function of $1,-1,1,-1 \ldots$ is: $\quad \sum_{n=0}^{\infty}(-1)^{n} x^{n}=\frac{1}{1+x}$.

If $f(x)=\sum_{n=0}^{\infty} a_{n} x^{n}, g(x)=\sum_{n=0}^{\infty} b_{n} x^{n}$ then:

$$
f(x) g(x)=\sum_{n=0}^{\infty} c_{n} x^{n} \text { where } c_{n}=\sum_{k=0}^{n} a_{k} b_{n-k}
$$

Examples

(1) Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?

Examples

- Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?
(2) Consider the function $f(x)=\left(1+x+x^{2}+\ldots x^{27}\right)^{4}$.

Examples

- Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?
(2) Consider the function $f(x)=\left(1+x+x^{2}+\ldots x^{27}\right)^{4}$.
(3) It is not difficult to see that the coefficient of x^{27} is the answer, but how easy is it to calculate it?

Examples

(1) Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?
(2) Consider the function $f(x)=\left(1+x+x^{2}+\ldots x^{27}\right)^{4}$.
(3) It is not difficult to see that the coefficient of x^{27} is the answer, but how easy is it to calculate it?
(4) Well, if you have a nice math program, it will be very easy.

Examples

(1) Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?
(2) Consider the function $f(x)=\left(1+x+x^{2}+\ldots x^{27}\right)^{4}$.
(3) It is not difficult to see that the coefficient of x^{27} is the answer, but how easy is it to calculate it?
(4) Well, if you have a nice math program, it will be very easy.
(5) But we can do better, Consider the function $g(x)=\left(\sum_{i=0}^{\infty} x^{i}\right)^{4}$.

Examples

(1) Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?
(2) Consider the function $f(x)=\left(1+x+x^{2}+\ldots x^{27}\right)^{4}$.
(3) It is not difficult to see that the coefficient of x^{27} is the answer, but how easy is it to calculate it?
(4) Well, if you have a nice math program, it will be very easy.
(5) But we can do better, Consider the function $g(x)=\left(\sum_{i=0}^{\infty} x^{i}\right)^{4}$.
(6) Again, the coefficient of x^{27} in the Taylor expansion of this function is the answer.

Examples

(1) Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?
(2) Consider the function $f(x)=\left(1+x+x^{2}+\ldots x^{27}\right)^{4}$.
(3) It is not difficult to see that the coefficient of x^{27} is the answer, but how easy is it to calculate it?
(4) Well, if you have a nice math program, it will be very easy.
(5) But we can do better, Consider the function $g(x)=\left(\sum_{i=0}^{\infty} x^{i}\right)^{4}$.
(6) Again, the coefficient of x^{27} in the Taylor expansion of this function is the answer.
(3) We noticed that $\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$.

Examples

(1) Let us start with an example we visited before: how many different solutions in non-negative integers does the equation $x+y+z+t=27$ have?
(2) Consider the function $f(x)=\left(1+x+x^{2}+\ldots x^{27}\right)^{4}$.
(3) It is not difficult to see that the coefficient of x^{27} is the answer, but how easy is it to calculate it?
(4) Well, if you have a nice math program, it will be very easy.
(5) But we can do better, Consider the function $g(x)=\left(\sum_{i=0}^{\infty} x^{i}\right)^{4}$.
(6) Again, the coefficient of x^{27} in the Taylor expansion of this function is the answer.
(7) We noticed that $\sum_{i=0}^{\infty} x^{i}=\frac{1}{1-x}$.
(8) So the answer will be the coefficient of x^{27} in the expansion of:

$$
(1-x)^{-4}
$$

The generalized binomial coefficients

Recall: $(1+x)^{n}=\sum_{k=1}^{\infty}\binom{n}{k} x^{k}$.

The generalized binomial coefficients

Recall: $(1+x)^{n}=\sum_{k=1}^{\infty}\binom{n}{k} x^{k}$.
Does this formula hold for all numbers n, like negative numbers, fractions, irrationals?

The generalized binomial coefficients

Recall: $(1+x)^{n}=\sum_{k=1}^{\infty}\binom{n}{k} x^{k}$.
Does this formula hold for all numbers n, like negative numbers, fractions, irrationals?

Would it be nice if we could use an extended Binomial Coefficient and write the answer:

$$
\binom{-4}{27} \text { or in general }\binom{-m}{k}
$$

The generalized binomial coefficients

Recall: $(1+x)^{n}=\sum_{k=1}^{\infty}\binom{n}{k} x^{k}$.
Does this formula hold for all numbers n, like negative numbers, fractions, irrationals?

Would it be nice if we could use an extended Binomial Coefficient and write the answer:

$$
\binom{-4}{27} \text { or in general }\binom{-m}{k}
$$

. Can we write:

$$
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

The generalized binomial coefficients

Recall: $(1+x)^{n}=\sum_{k=1}^{\infty}\binom{n}{k} x^{k}$.
Does this formula hold for all numbers n, like negative numbers, fractions, irrationals?

Would it be nice if we could use an extended Binomial Coefficient and write the answer:

$$
\binom{-4}{27} \text { or in general }\binom{-m}{k}
$$

. Can we write:

$$
(1+x)^{\alpha}=\sum_{n=0}^{\infty}\binom{\alpha}{n} x^{n}
$$

How can we use it for solving counting problems?

Example

Example

(1) A box contains 30 red, 40 blue and 50 white balls. In how many ways can you select 70 balls?

Example

(1) A box contains 30 red, 40 blue and 50 white balls. In how many ways can you select 70 balls?
(2) The coefficient of x^{70} in the product
$\left(1+x+\ldots+x^{30}\right)\left(1+x+\ldots+x^{40}\right)\left(1+x+\ldots+x^{50}\right)$
is the answer.

Example

(1) A box contains 30 red, 40 blue and 50 white balls. In how many ways can you select 70 balls?
(2) The coefficient of x^{70} in the product $\left(1+x+\ldots+x^{30}\right)\left(1+x+\ldots+x^{40}\right)\left(1+x+\ldots+x^{50}\right)$ is the answer.
(0 Note that:

$$
\begin{gathered}
\left(1+x+\ldots+x^{30}\right)\left(1+x+\ldots+x^{40}\right)\left(1+x+\ldots+x^{50}\right)= \\
\frac{1-x^{31}}{1-x} \frac{1-x^{41}}{1-x} \frac{1-x^{51}}{1-x}=(1-x)^{-3}\left(1-x^{31}\right)\left(1-x^{41}\right)\left(1-x^{51}\right)
\end{gathered}
$$

Examples

All we need is to find the coefficient of x^{70} in:

$$
\left(\sum_{i=0}^{\infty}\binom{-3}{i} x^{i}\right)\left(1-x^{31}-x^{41}-x^{51}+\ldots\right)
$$

which turns out to be 1061 once we understand the meaning of

$$
\binom{-3}{i}
$$

Drill

Use this technique to find the number of distinct solution to:

$$
\begin{gathered}
x_{1}+x_{2}+x_{3}+x_{4}=85 \\
10 \leq x_{1} \leq 25,15 \leq x_{2} \leq 30,10 \leq x_{3} \leq 40,15 \leq x_{4} \leq 25 .
\end{gathered}
$$

The Generalized Binomial Theorem

Theorem (The generalized binomial theorem)

$$
(1+x)^{r}=\sum_{i=0}^{\infty}\binom{r}{i} x^{i} \quad\binom{r}{i}=\frac{r(r-1) \ldots(r-i+1)}{i!}
$$

The Generalized Binomial Theorem

Theorem (The generalized binomial theorem)

$$
(1+x)^{r}=\sum_{i=0}^{\infty}\binom{r}{i} x^{i} \quad\binom{r}{i}=\frac{r(r-1) \ldots(r-i+1)}{i!}
$$

Chứng minh.
Follows directly from Taylor's expansion of $(1+x)^{r}$.

The Generalized Binomial Theorem

Theorem (The generalized binomial theorem)

$$
(1+x)^{r}=\sum_{i=0}^{\infty}\binom{r}{i} x^{i} \quad\binom{r}{i}=\frac{r(r-1) \ldots(r-i+1)}{i!}
$$

Chứng minh.
Follows directly from Taylor's expansion of $(1+x)^{r}$.

The Generalized Binomial Theorem

Theorem (The generalized binomial theorem)

$$
(1+x)^{r}=\sum_{i=0}^{\infty}\binom{r}{i} x^{i} \quad\binom{r}{i}=\frac{r(r-1) \ldots(r-i+1)}{i!}
$$

Chứng minh.
Follows directly from Taylor's expansion of $(1+x)^{r}$.
For negative integers we get:

$$
\binom{r}{i}=\frac{r(r-1) \ldots(r-i+1)}{i!}=(-1)^{i}\binom{-r+i-1}{-r-1}
$$

Drill

Show that:

$$
\binom{\frac{1}{2}}{k}=\frac{(-1)^{k}}{4^{k}}\binom{2 k}{k}
$$

Derangements

Recall: an n-derangement is an n-permutation $\pi=a_{1} a_{2} \ldots a_{n}$ in which $\forall i: a_{i} \neq i$. If we denote the number of n-derangments by D_{n} then:

$$
D_{1}=0, D_{2}=1 \text { and } D_{n+1}=n\left(D_{n}+D_{n-1}\right)
$$

Let: $D(x)=\sum_{n=0}^{\infty} D_{n} \frac{x^{n}}{n!}$ (the exponential generating function for D_{n}).

Derangements

Recall: an n-derangement is an n-permutation $\pi=a_{1} a_{2} \ldots a_{n}$ in which $\forall i: a_{i} \neq i$. If we denote the number of n-derangments by D_{n} then:

$$
D_{1}=0, D_{2}=1 \text { and } D_{n+1}=n\left(D_{n}+D_{n-1}\right)
$$

$$
\text { Let: } D(x)=\sum_{n=0}^{\infty} D_{n} \frac{x^{n}}{n!} \text { (the exponential generating function for } D_{n} \text {). }
$$

An easy calculation using the recurrence relation yields:

$$
\frac{D^{\prime}(x)}{D(x)}=\frac{x}{1-x} \longrightarrow(\ln D(x))^{\prime}=\frac{x}{1-x}
$$

Derangements

Recall: an n-derangement is an n-permutation $\pi=a_{1} a_{2} \ldots a_{n}$ in which $\forall i: a_{i} \neq i$. If we denote the number of n-derangments by D_{n} then:

$$
D_{1}=0, D_{2}=1 \text { and } D_{n+1}=n\left(D_{n}+D_{n-1}\right)
$$

$$
\text { Let: } D(x)=\sum_{n=0}^{\infty} D_{n} \frac{x^{n}}{n!} \text { (the exponential generating function for } D_{n} \text {). }
$$

An easy calculation using the recurrence relation yields:

$$
\begin{aligned}
& \frac{D^{\prime}(x)}{D(x)}=\frac{x}{1-x} \longrightarrow(\ln D(x))^{\prime}=\frac{x}{1-x} \\
& D(x)=\frac{e^{-x}}{1-x}=\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!}\right)\left(\sum_{k=0}^{\infty} x^{k}\right)
\end{aligned}
$$

Derangements

Recall: an n-derangement is an n-permutation $\pi=a_{1} a_{2} \ldots a_{n}$ in which $\forall i: a_{i} \neq i$. If we denote the number of n-derangments by D_{n} then:

$$
D_{1}=0, D_{2}=1 \text { and } D_{n+1}=n\left(D_{n}+D_{n-1}\right)
$$

$$
\text { Let: } D(x)=\sum_{n=0}^{\infty} D_{n} \frac{x^{n}}{n!} \text { (the exponential generating function for } D_{n} \text {). }
$$

An easy calculation using the recurrence relation yields:

$$
\begin{aligned}
& \quad \frac{D^{\prime}(x)}{D(x)}=\frac{x}{1-x} \longrightarrow(\ln D(x))^{\prime}=\frac{x}{1-x} \\
& D(x)=\frac{e^{-x}}{1-x}=\left(\sum_{k=0}^{\infty}(-1)^{k} \frac{x^{k}}{k!}\right)\left(\sum_{k=0}^{\infty} x^{k}\right) \\
& \text { Or: } \frac{D_{n}}{n!}=\sum_{k=0}^{n} \frac{(-1)^{k}}{k!} \Longrightarrow D_{n}=n!\sum_{k=0}^{n} \frac{(-1)^{k}}{k!}
\end{aligned}
$$

Catalan Numbers

Question

You need to calculate the product of n matrices $A_{1} \times A_{2} \times \ldots \times A_{n}$. How do we parenthesize the expression to do it in the most economical way?

Catalan Numbers

Question

You need to calculate the product of n matrices $A_{1} \times A_{2} \times \ldots \times A_{n}$. How do we parenthesize the expression to do it in the most economical way?

Catalan Numbers

Question

You need to calculate the product of n matrices $A_{1} \times A_{2} \times \ldots \times A_{n}$. How do we parenthesize the expression to do it in the most economical way?

Why does it matter?

Drill

Let $A[m, n]$ denote an $m \times n$ matrix (m rows and n columns). For each possible multiplication of the following product calculate the number of multiplications of real numbers needed to calculate the product.

$$
A[10,20] A[20,40] A[40,50] A[50,10]
$$

Catalan Numbers

Example

Catalan Numbers

Example

a. $A \times B \times C$ can be parethesized in two different ways.

Catalan Numbers

Example

a. $A \times B \times C$ can be parethesized in two different ways.
b. $A \times B \times C \times D$ can be parethesized in 5 different ways.

Catalan Numbers

Example

a. $A \times B \times C$ can be parethesized in two different ways.
b. $A \times B \times C \times D$ can be parethesized in 5 different ways.
c. Let m_{n} be the number of ways to properly parenthesize the product of $n+1$ matrices.

Catalan Numbers

Example

a. $A \times B \times C$ can be parethesized in two different ways.
b. $A \times B \times C \times D$ can be parethesized in 5 different ways.
c. Let m_{n} be the number of ways to properly parenthesize the product of $n+1$ matrices.
d. $m_{1}=1, m_{2}=2, m_{3}=5, m_{n}=$? $\left(\right.$ we set $\left.m_{0}=1\right)$.

Catalan Numbers

Example

a. $A \times B \times C$ can be parethesized in two different ways.
b. $A \times B \times C \times D$ can be parethesized in 5 different ways.
c. Let m_{n} be the number of ways to properly parenthesize the product of $n+1$ matrices.
d. $m_{1}=1, m_{2}=2, m_{3}=5, m_{n}=$? $\left(\right.$ we set $\left.m_{0}=1\right)$.
e. For $k \geq 0, A_{1} A_{2} \ldots A_{n+1}$ can be parenthesized as:
$\left[A_{1} \ldots A_{k}\right]\left[A_{k+1} \ldots A_{n+1}\right]$ so the number of ways to further parenthesize this product is $m_{k-1} m_{n-k}$.

Catalan Numbers

Example

a. $A \times B \times C$ can be parethesized in two different ways.
b. $A \times B \times C \times D$ can be parethesized in 5 different ways.
c. Let m_{n} be the number of ways to properly parenthesize the product of $n+1$ matrices.
d. $m_{1}=1, m_{2}=2, m_{3}=5, m_{n}=$? (we set $m_{0}=1$).
e. For $k \geq 0, A_{1} A_{2} \ldots A_{n+1}$ can be parenthesized as:
$\left[A_{1} \ldots A_{k}\right]\left[A_{k+1} \ldots A_{n+1}\right]$ so the number of ways to further parenthesize this product is $m_{k-1} m_{n-k}$.
f.

Hence : $\quad m_{n+1}=\sum_{i=0}^{n} m_{i} \cdot m_{n-i}$

Catalan Numbers

1. The generating function of the sequence m_{n} is: $A(x)=\sum_{i=0}^{\infty} m_{i} x^{i}$

Catalan Numbers

1. The generating function of the sequence m_{n} is: $A(x)=\sum_{i=0}^{\infty} m_{i} x^{i}$
2. $m_{n+1}=\sum_{i=0}^{n} m_{i} \cdot m_{n-i} \Longrightarrow m_{n+1} x^{n+1}=x\left(\sum_{i=0}^{n} m_{i} \cdot m_{n-i}\right) x^{n}$.

Catalan Numbers

1. The generating function of the sequence m_{n} is: $A(x)=\sum_{i=0}^{\infty} m_{i} x^{i}$
2. $m_{n+1}=\sum_{i=0}^{n} m_{i} \cdot m_{n-i} \Longrightarrow m_{n+1} x^{n+1}=x\left(\sum_{i=0}^{n} m_{i} \cdot m_{n-i}\right) x^{n}$.
3. $\sum_{i=0}^{\infty} m_{n+1} x^{n+1}=1+\sum_{k=0}^{\infty} m_{k} \cdot x^{k}$

Catalan Numbers

1. The generating function of the sequence m_{n} is: $A(x)=\sum_{i=0}^{\infty} m_{i} x^{i}$
2. $m_{n+1}=\sum_{i=0}^{n} m_{i} \cdot m_{n-i} \Longrightarrow m_{n+1} x^{n+1}=x\left(\sum_{i=0}^{n} m_{i} \cdot m_{n-i}\right) x^{n}$.
3. $\sum_{i=0}^{\infty} m_{n+1} x^{n+1}=1+\sum_{k=0}^{\infty} m_{k} \cdot x^{k}$
4. $A^{2}(x)=\sum_{k=0}^{\infty} b_{i} x^{k} \quad b_{k}=\sum_{j=0}^{k} m_{j} \cdot m_{k-j}$

Catalan Numbers

1. The generating function of the sequence m_{n} is: $A(x)=\sum_{i=0}^{\infty} m_{i} x^{i}$
2. $m_{n+1}=\sum_{i=0}^{n} m_{i} \cdot m_{n-i} \Longrightarrow m_{n+1} x^{n+1}=x\left(\sum_{i=0}^{n} m_{i} \cdot m_{n-i}\right) x^{n}$.
3. $\sum_{i=0}^{\infty} m_{n+1} x^{n+1}=1+\sum_{k=0}^{\infty} m_{k} \cdot x^{k}$
4. $A^{2}(x)=\sum_{k=0}^{\infty} b_{i} x^{k} \quad b_{k}=\sum_{j=0}^{k} m_{j} \cdot m_{k-j}$
5. Combining 2,3 and 4 we get:

$$
1+A(x)=x A^{2}(x) .
$$

Catalan Numbers

1. The generating function of the sequence m_{n} is: $A(x)=\sum_{i=0}^{\infty} m_{i} x^{i}$
2. $m_{n+1}=\sum_{i=0}^{n} m_{i} \cdot m_{n-i} \Longrightarrow m_{n+1} x^{n+1}=x\left(\sum_{i=0}^{n} m_{i} \cdot m_{n-i}\right) x^{n}$.
3. $\sum_{i=0}^{\infty} m_{n+1} x^{n+1}=1+\sum_{k=0}^{\infty} m_{k} \cdot x^{k}$
4. $A^{2}(x)=\sum_{k=0}^{\infty} b_{i} x^{k} \quad b_{k}=\sum_{j=0}^{k} m_{j} \cdot m_{k-j}$
5. Combining 2, 3 and 4 we get:

$$
1+A(x)=x A^{2}(x)
$$

6. This is a quadratic equation in the unknown $A(x)$ yielding:

$$
2 x A(x)=1 \pm \sqrt{1-4 x}
$$

Catalan Numbers

1. The generating function of the sequence m_{n} is: $A(x)=\sum_{i=0}^{\infty} m_{i} x^{i}$
2. $m_{n+1}=\sum_{i=0}^{n} m_{i} \cdot m_{n-i} \Longrightarrow m_{n+1} x^{n+1}=x\left(\sum_{i=0}^{n} m_{i} \cdot m_{n-i}\right) x^{n}$.
3. $\sum_{i=0}^{\infty} m_{n+1} x^{n+1}=1+\sum_{k=0}^{\infty} m_{k} \cdot x^{k}$
4. $A^{2}(x)=\sum_{k=0}^{\infty} b_{i} x^{k} \quad b_{k}=\sum_{j=0}^{k} m_{j} \cdot m_{k-j}$
5. Combining 2,3 and 4 we get:

$$
1+A(x)=x A^{2}(x) .
$$

6. This is a quadratic equation in the unknown $A(x)$ yielding:

$$
2 x A(x)=1 \pm \sqrt{1-4 x}
$$

7. Since $2 x A(x)=0$ when $x=0$ we have:

$$
A(x)=\frac{1}{2 x}(1-\sqrt{1-4 x}) .
$$

Catalan Numbers

Or:

Catalan Numbers

Or: Substituting the initial condition $m_{0}=A(0)=0$ we get:

$$
\begin{gathered}
A(x)=\frac{1}{2 x}(1-\sqrt{1-4 x}) \\
(1-4 x)^{\frac{1}{2}}=\sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4)^{k} x^{k}=\sum_{k=0}^{\infty}\binom{2 k}{k} x^{k}
\end{gathered}
$$

(Using : $\left.\binom{1 / 2}{k}=(-1 / 4)^{k}\binom{2 k}{k}\right)$.

Catalan Numbers

Or: Substituting the initial condition $m_{0}=A(0)=0$ we get:

$$
\begin{gathered}
A(x)=\frac{1}{2 x}(1-\sqrt{1-4 x}) \\
(1-4 x)^{\frac{1}{2}}=\sum_{k=0}^{\infty}\binom{1 / 2}{k}(-4)^{k} x^{k}=\sum_{k=0}^{\infty}\binom{2 k}{k} x^{k}
\end{gathered}
$$

(Using : $\left.\binom{1 / 2}{k}=(-1 / 4)^{k}\binom{2 k}{k}\right)$.
m_{n} is the coefficient of x^{n} in the expansion of: $(1-\sqrt{1-4 x}) /(1 / 2 x)$
A simple calculation yields:

$$
m_{n}=\frac{1}{n+1}\binom{2 n}{n}
$$

Lattice walks

Question

Given a lattice. In how many ways can you walk from $(0,0)$ to (n, n) if you can only move to the right or up?

Lattice walks

Question

Given a lattice. In how many ways can you walk from $(0,0)$ to (n, n) if you can only move to the right or up?

Answer

The ansewr to this question is easy: you have to make $2 n$ moves. n horizontal moves and n vertical. Any combination of such moves will be a walk from $(0,0) \rightarrow(n, n)$

Lattice walks

Question

Given a lattice. In how many ways can you walk from $(0,0)$ to (n, n) if you can only move to the right or up?

Answer

The ansewr to this question is easy: you have to make $2 n$ moves. n horizontal moves and n vertical. Any combination of such moves will be a walk from $(0,0) \rightarrow(n, n)$

Lattice walks

Question

Given a lattice. In how many ways can you walk from $(0,0)$ to (n, n) if you can only move to the right or up?

Answer

The ansewr to this question is easy: you have to make $2 n$ moves. n horizontal moves and n vertical. Any combination of such moves will be a walk from $(0,0) \rightarrow(n, n)$

So the answer is:

$$
\binom{2 n}{n}
$$

Question

The same question but this time your walk is restricted to stay below the diagonal.

Question

A minor change: We want to count the number of moves that stay below the diagonal.

Question

A minor change: We want to count the number of moves that stay below the diagonal.

Answer

Question

A minor change: We want to count the number of moves that stay below the diagonal.

Answer

- It may not look clear how to construct a solution, a recurrence relation, or just solve it.

Question

A minor change: We want to count the number of moves that stay below the diagonal.

Answer

- It may not look clear how to construct a solution, a recurrence relation, or just solve it.
- Every walk is a sequence $x_{1}, x_{2}, \ldots x_{2 n}$ of moves where x_{i} is either move right or move up.

Question

A minor change: We want to count the number of moves that stay below the diagonal.

Answer

- It may not look clear how to construct a solution, a recurrence relation, or just solve it.
- Every walk is a sequence $x_{1}, x_{2}, \ldots x_{2 n}$ of moves where x_{i} is either move right or move up.
- To stay below the diagonal, for each k the subsequence $x_{1}, x_{2}, \ldots x_{k}$ must have at least as many right-moves as up-moves.

Question

A minor change: We want to count the number of moves that stay below the diagonal.

Answer

- It may not look clear how to construct a solution, a recurrence relation, or just solve it.
- Every walk is a sequence $x_{1}, x_{2}, \ldots x_{2 n}$ of moves where x_{i} is either move right or move up.
- To stay below the diagonal, for each k the subsequence $x_{1}, x_{2}, \ldots x_{k}$ must have at least as many right-moves as up-moves.
- But we already counted such sequences!

Question

A minor change: We want to count the number of moves that stay below the diagonal.

Answer

- It may not look clear how to construct a solution, a recurrence relation, or just solve it.
- Every walk is a sequence $x_{1}, x_{2}, \ldots x_{2 n}$ of moves where x_{i} is either move right or move up.
- To stay below the diagonal, for each k the subsequence $x_{1}, x_{2}, \ldots x_{k}$ must have at least as many right-moves as up-moves.
- But we already counted such sequences!
- Balanced parenthesis $(()(()())),(: \rightarrow): \uparrow$. So the number of walks is the Catalan number $m_{2 n}$.

Other counting problems can be solved by "mapping" them to solved problems.

- How many binary sequences $b_{1} b_{2} b_{3} \ldots b_{2 n}$ consisting of $n 1$'s and $n 0$'s are there in which $\sum_{i=1}^{k} b_{i} \geq\left\lceil\frac{k}{2}\right\rceil \forall k \geq 1$?

Other counting problems can be solved by "mapping" them to solved problems.

- How many binary sequences $b_{1} b_{2} b_{3} \ldots b_{2 n}$ consisting of $n 1$'s and $n 0$'s are there in which $\sum_{i=1}^{k} b_{i} \geq\left\lceil\frac{k}{2}\right\rceil \forall k \geq 1$?
- n Persons line up to buy tickets to the theater. The cost of a ticket is 50,000 VND. Each person has a 50,000 VND or a 100,000 VND. The cashier opens the box office with no money. So if the first person has a 100,000 VND the line will get stuck as the cashier will not be able to give him change. In how many ways can n persons arrange the line so all of them will be able to buy tickets with no delays?

Other counting problems can be solved by "mapping" them to solved problems.

- How many binary sequences $b_{1} b_{2} b_{3} \ldots b_{2 n}$ consisting of $n 1$'s and $n 0$'s are there in which $\sum_{i=1}^{k} b_{i} \geq\left\lceil\frac{k}{2}\right\rceil \forall k \geq 1$?
- n Persons line up to buy tickets to the theater. The cost of a ticket is 50,000 VND. Each person has a 50,000 VND or a 100,000 VND. The cashier opens the box office with no money. So if the first person has a 100,000 VND the line will get stuck as the cashier will not be able to give him change. In how many ways can n persons arrange the line so all of them will be able to buy tickets with no delays?
- We need to assume that at least $\left\lceil\frac{n}{2}\right\rceil$ have a 50,000 VND note.

