Recurrence Relations

Ngày 17 tháng 11 năm 2012

Recursive Problem Solving

Question

Certain bacteria divide into two bacteria every second. It was noticed that when one bacterium is placed in a bottle, it fills it up in 3 minutes. How long will it take to fill half the bottle?

Recursive Problem Solving

Question

Certain bacteria divide into two bacteria every second. It was noticed that when one bacterium is placed in a bottle, it fills it up in 3 minutes. How long will it take to fill half the bottle?

Discussion

Many processes lend themselves to recursive handling. Many sequences are determined by previous members of the sequence.

Recursive Problem Solving

Question

Certain bacteria divide into two bacteria every second. It was noticed that when one bacterium is placed in a bottle, it fills it up in 3 minutes. How long will it take to fill half the bottle?

Discussion

Many processes lend themselves to recursive handling. Many sequences are determined by previous members of the sequence.

Recursive Problem Solving

Question

Certain bacteria divide into two bacteria every second. It was noticed that when one bacterium is placed in a bottle, it fills it up in 3 minutes. How long will it take to fill half the bottle?

Discussion

Many processes lend themselves to recursive handling. Many sequences are determined by previous members of the sequence. How many got the bacteria process right?

Recursive Problem Solving

Question

Certain bacteria divide into two bacteria every second. It was noticed that when one bacterium is placed in a bottle, it fills it up in 3 minutes. How long will it take to fill half the bottle?

Discussion

Many processes lend themselves to recursive handling. Many sequences are determined by previous members of the sequence.

How many got the bacteria process right?
If we denote the number of bacteria at second number k by b_{k} then we have: $b_{k+1}=2 b_{k}, b_{1}=1$.
This is a recurrence relation.

The Towers of Hanoi

Another example of a problem that lends itself to a recurrence relation is a famous puzzle: The towers of Hanoi

Recurrence Realtions

This puzzle asks you to move the disks from the left tower to the right tower, one disk at a time so that a larger disk is never placed on a smaller disk. The goal is to use the smallest number of moves.

Recurrence Realtions

This puzzle asks you to move the disks from the left tower to the right tower, one disk at a time so that a larger disk is never placed on a smaller disk. The goal is to use the smallest number of moves.

Clearly, before we move the large disk from the left to the right, all but the bottom disk, have to be on the middle tower. So if we denote the smallest number of moves by h_{n} then we have:

$$
h_{n+1}=2 h_{n}+1
$$

A simple technique for solving recurrence relation is called telescoping.

Recurrence Realtions

This puzzle asks you to move the disks from the left tower to the right tower, one disk at a time so that a larger disk is never placed on a smaller disk. The goal is to use the smallest number of moves.

Clearly, before we move the large disk from the left to the right, all but the bottom disk, have to be on the middle tower. So if we denote the smallest number of moves by h_{n} then we have:

$$
h_{n+1}=2 h_{n}+1
$$

A simple technique for solving recurrence relation is called telescoping.
Start from the first term and sequntially produce the next terms until a clear pattern emerges. If you want to be mathematically rigoruous you may use induction.

Example
 Solving $b_{n+1}=2 b_{n}, b_{1}=1$.

Example
 Solving $b_{n+1}=2 b_{n}, b_{1}=1$.

Example

Solving $b_{n+1}=2 b_{n}, b_{1}=1$.
$b_{1}=1, b_{2}=2, b_{3}=4, \ldots b_{n}=2^{n-1}$.

Example

Solving $b_{n+1}=2 b_{n}, b_{1}=1$.
$b_{1}=1, b_{2}=2, b_{3}=4, \ldots b_{n}=2^{n-1}$.
Solving the Towers of Hanoi recurrence relation:

$$
h_{1}=1, h_{2}=3, h_{3}=7, h_{4}=15, \ldots h_{n}=2^{n}-1
$$

Proof by induction:
(1) $h_{1}=1=2^{1}-1$

Example

Solving $b_{n+1}=2 b_{n}, b_{1}=1$.
$b_{1}=1, b_{2}=2, b_{3}=4, \ldots b_{n}=2^{n-1}$.
Solving the Towers of Hanoi recurrence relation:

$$
h_{1}=1, h_{2}=3, h_{3}=7, h_{4}=15, \ldots h_{n}=2^{n}-1
$$

Proof by induction:
(1) $h_{1}=1=2^{1}-1$
(2) Assume $h_{n}=2^{n}-1$

Example

Solving $b_{n+1}=2 b_{n}, b_{1}=1$.
$b_{1}=1, b_{2}=2, b_{3}=4, \ldots b_{n}=2^{n-1}$.
Solving the Towers of Hanoi recurrence relation:

$$
h_{1}=1, h_{2}=3, h_{3}=7, h_{4}=15, \ldots h_{n}=2^{n}-1
$$

Proof by induction:
(1) $h_{1}=1=2^{1}-1$
(2) Assume $h_{n}=2^{n}-1$
(3) Prove: $h_{n+1}=2^{n+1}-1$.

Example

Solving $b_{n+1}=2 b_{n}, b_{1}=1$.
$b_{1}=1, b_{2}=2, b_{3}=4, \ldots b_{n}=2^{n-1}$.
Solving the Towers of Hanoi recurrence relation:

$$
h_{1}=1, h_{2}=3, h_{3}=7, h_{4}=15, \ldots h_{n}=2^{n}-1
$$

Proof by induction:
(1) $h_{1}=1=2^{1}-1$
(2) Assume $h_{n}=2^{n}-1$
(3) Prove: $h_{n+1}=2^{n+1}-1$.
(4) $h_{n+1}=2 h_{n}+1=2\left(2^{n}-1\right)+1=2^{n+1}-1$.

Example

Solving $b_{n+1}=2 b_{n}, b_{1}=1$.
$b_{1}=1, b_{2}=2, b_{3}=4, \ldots b_{n}=2^{n-1}$.
Solving the Towers of Hanoi recurrence relation:

$$
h_{1}=1, h_{2}=3, h_{3}=7, h_{4}=15, \ldots h_{n}=2^{n}-1
$$

Proof by induction:
(1) $h_{1}=1=2^{1}-1$
(2) Assume $h_{n}=2^{n}-1$
(3) Prove: $h_{n+1}=2^{n+1}-1$.
(4) $h_{n+1}=2 h_{n}+1=2\left(2^{n}-1\right)+1=2^{n+1}-1$.
(5) Solve: $a_{n}=\frac{1}{1+a_{n-1}}, a_{1}=1$.

Example

Solving $b_{n+1}=2 b_{n}, b_{1}=1$.
$b_{1}=1, b_{2}=2, b_{3}=4, \ldots b_{n}=2^{n-1}$.
Solving the Towers of Hanoi recurrence relation:

$$
h_{1}=1, h_{2}=3, h_{3}=7, h_{4}=15, \ldots h_{n}=2^{n}-1
$$

Proof by induction:
(1) $h_{1}=1=2^{1}-1$
(2) Assume $h_{n}=2^{n}-1$
(3) Prove: $h_{n+1}=2^{n+1}-1$.
(9) $h_{n+1}=2 h_{n}+1=2\left(2^{n}-1\right)+1=2^{n+1}-1$.
(6) Solve: $a_{n}=\frac{1}{1+a_{n-1}}, a_{1}=1$.
(0) Telescoping yields: $1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
$1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
$1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
Do we see a pattern?
$1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
Do we see a pattern?
Looks like $a_{n}=\frac{f_{n-1}}{f_{n}}$ where f_{n} are the Fibonacci numbers.
Can we prove it?
$1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
Do we see a pattern?
Looks like $a_{n}=\frac{f_{n-1}}{f_{n}}$ where f_{n} are the Fibonacci numbers.
Can we prove it?
Chứng minh.
$1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
Do we see a pattern?
Looks like $a_{n}=\frac{f_{n-1}}{f_{n}}$ where f_{n} are the Fibonacci numbers.
Can we prove it?
Chứng minh.
(1) By induction: $a_{1}=1=\frac{f_{0}}{f_{1}}$.
$1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
Do we see a pattern?
Looks like $a_{n}=\frac{f_{n-1}}{f_{n}}$ where f_{n} are the Fibonacci numbers.
Can we prove it?
Chứng minh.
(1) By induction: $a_{1}=1=\frac{f_{0}}{f_{1}}$.
(2) Induction hypothesis: assume $a_{n}=\frac{f_{n-1}}{f_{n}}$
$1, \frac{1}{2}, \frac{2}{3}, \frac{3}{5}, \frac{5}{8}, \frac{8}{13}$
Do we see a pattern?
Looks like $a_{n}=\frac{f_{n-1}}{f_{n}}$ where f_{n} are the Fibonacci numbers.
Can we prove it?
Chứng minh.
(1) By induction: $a_{1}=1=\frac{f_{0}}{f_{1}}$.
(2) Induction hypothesis: assume $a_{n}=\frac{f_{n-1}}{f_{n}}$
(3)

$$
a_{n+1}=\frac{1}{1+a_{n}}=\frac{1}{1+\frac{f_{n-1}}{f_{n}}}=\frac{f_{n}}{f_{n}+f_{n-1}}=\frac{f_{n}}{f_{n+1}}
$$

Recurrence Relations Terminology

Definition

A recurrence relation for a sequence a_{n} is a relation of the form $a_{n+1}=f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

We do not expect to have a useful method to solve all recurrence relations. This definition actually applies to any sequence! We shall break down the functions for which we do have effective methods to "solve" the recurrence relation. By solving we mean obtaining an explicit expression of the form $a_{n}=g(n)$. To accomplish this we need some terminology.

Recurrence Relations Terminology

Definition

A recurrence relation for a sequence a_{n} is a relation of the form $a_{n+1}=f\left(a_{1}, a_{2}, \ldots, a_{n}\right)$.

We do not expect to have a useful method to solve all recurrence relations. This definition actually applies to any sequence! We shall break down the functions for which we do have effective methods to "solve" the recurrence relation. By solving we mean obtaining an explicit expression of the form $a_{n}=g(n)$. To accomplish this we need some terminology.

Definition

A recurrence relation is linear if:

$$
f\left(a_{1}, a_{2}, \ldots, a_{n}\right)=\sum_{i=1}^{n} h_{i} \cdot a_{i}+h(n) \text { Where } h(n) \text { is a function of } n \text {. }
$$

Definition

Definition

(1) A recurrence relation is:

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$
(3) With constant coefficients: if all h_{i} are constants.

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$
(3) With constant coefficients: if all h_{i} are constants.
(4) Of order kif: $f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=a_{n}=\sum_{i=n-k}^{n-1} h_{i} \cdot a_{i}$

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$
(3) With constant coefficients: if all h_{i} are constants.
(4) Of order kif: $f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=a_{n}=\sum_{i=n-k}^{n-1} h_{i} \cdot a_{i}$

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$
(3) With constant coefficients: if all h_{i} are constants.
(9) Of order kif: $f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=a_{n}=\sum_{i=n-k}^{n-1} h_{i} \cdot a_{i}$

Examples

(1) $f_{n}=f_{n-1}+f_{n-2}$ is a linear, homogeneous recurrence relation of order 2 with constant coefficients.

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$
(0) With constant coefficients: if all h_{i} are constants.
(9) Of order kif: $f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=a_{n}=\sum_{i=n-k}^{n-1} h_{i} \cdot a_{i}$

Examples

(1) $f_{n}=f_{n-1}+f_{n-2}$ is a linear, homogeneous recurrence relation of order 2 with constant coefficients.
(2) $a_{n}=a_{n-1}+n$ is a linear, non-homogeneous recurrence relation of order 1 and constant coefficients.

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$
(0) With constant coefficients: if all h_{i} are constants.
(9) Of order kif: $f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=a_{n}=\sum_{i=n-k}^{n-1} h_{i} \cdot a_{i}$

Examples

(1) $f_{n}=f_{n-1}+f_{n-2}$ is a linear, homogeneous recurrence relation of order 2 with constant coefficients.
(2) $a_{n}=a_{n-1}+n$ is a linear, non-homogeneous recurrence relation of order 1 and constant coefficients.
(3) $d_{n}=(n-1) d_{n-1}+(n-1) d_{n-2}$ is a linear, homogeneous recurrence relation of order 2 . It does not have constant coefficients.

Definition

(1) A recurrence relation is:
(2) homogeneous if $h(n)=0$
(3) With constant coefficients: if all h_{i} are constants.
(9) Of order kif: $f\left(a_{1}, a_{2}, \ldots, a_{n-1}\right)=a_{n}=\sum_{i=n-k}^{n-1} h_{i} \cdot a_{i}$

Examples

(1) $f_{n}=f_{n-1}+f_{n-2}$ is a linear, homogeneous recurrence relation of order 2 with constant coefficients.
(2) $a_{n}=a_{n-1}+n$ is a linear, non-homogeneous recurrence relation of order 1 and constant coefficients.
(3) $d_{n}=(n-1) d_{n-1}+(n-1) d_{n-2}$ is a linear, homogeneous recurrence relation of order 2. It does not have constant coefficients.
(9) $a_{n}=a_{n-1}+2 a_{n-2}+4 a_{n-5}+2^{n}$ is a non-homogeneous, linear recurrence relation with constant coefficients of order 5 .

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.
A few more examples coming from verbal problems.
(1) In how many ways can you write the integer n as a sum of k distinct positive integers?

Answer:

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.
A few more examples coming from verbal problems.
(1) In how many ways can you write the integer n as a sum of k distinct positive integers?
(2) In how many ways can you write n as a sum of 5 distinct positive integers?

Answer:

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.
A few more examples coming from verbal problems.
(1) In how many ways can you write the integer n as a sum of k distinct positive integers?
(2) In how many ways can you write n as a sum of 5 distinct positive integers?

Answer:

(1) To answer the first question we split the answers into two sets:

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.
A few more examples coming from verbal problems.
(1) In how many ways can you write the integer n as a sum of k distinct positive integers?
(2) In how many ways can you write n as a sum of 5 distinct positive integers?

Answer:

(1) To answer the first question we split the answers into two sets:

- First set contains all solutions that include the number 1.

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.
A few more examples coming from verbal problems.
(1) In how many ways can you write the integer n as a sum of k distinct positive integers?
(2) In how many ways can you write n as a sum of 5 distinct positive integers?

Answer:

(1) To answer the first question we split the answers into two sets:

- First set contains all solutions that include the number 1.
- The second is the set of solutions for which every integer is >1.

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.
A few more examples coming from verbal problems.
(1) In how many ways can you write the integer n as a sum of k distinct positive integers?
(2) In how many ways can you write n as a sum of 5 distinct positive integers?

Answer:

(1) To answer the first question we split the answers into two sets:

- First set contains all solutions that include the number 1.
- The second is the set of solutions for which every integer is >1.
(2) If we denote the number of solutions by $a_{n, k}$ then we get:

$$
a_{n, k}=a_{n-1, k-1}+a_{n-k, k}
$$

Recurrence Relations

$a_{n}=\frac{1}{1+a_{n-1}} \quad$ is a non-linear recurrence relation.
A few more examples coming from verbal problems.
(1) In how many ways can you write the integer n as a sum of k distinct positive integers?
(2) In how many ways can you write n as a sum of 5 distinct positive integers?

Answer:

(1) To answer the first question we split the answers into two sets:

- First set contains all solutions that include the number 1.
- The second is the set of solutions for which every integer is >1.
(2) If we denote the number of solutions by $a_{n, k}$ then we get:

$$
a_{n, k}=a_{n-1, k-1}+a_{n-k, k}
$$

(3) This is a linear, homogeneous recurrence relation with constant coefficients, but not of finite order.

Answer (continued)

Answer (continued)

(1) For the second equation we have:

Answer (continued)

(1) For the second equation we have:
(2)

$$
b_{n, 5}=b_{n-1,4}+b_{n-5,5}
$$

Answer (continued)

(1) For the second equation we have:
(2)

$$
b_{n, 5}=b_{n-1,4}+b_{n-5,5}
$$

© Again, this is a linear, homogeneous recurrence relation with constant coefficients, of order ?.

Answer (continued)

(1) For the second equation we have:
(2)

$$
b_{n, 5}=b_{n-1,4}+b_{n-5,5}
$$

(3) Again, this is a linear, homogeneous recurrence relation with constant coefficients, of order?

Remark

Linear, homogeneous recurrence relations have many solutions. Indeed if $f(n)$ and $g(n)$ are solutions then so is $\alpha f(n)+\beta g(n)$.

Answer (continued)

(1) For the second equation we have:
(2)

$$
b_{n, 5}=b_{n-1,4}+b_{n-5,5}
$$

(3) Again, this is a linear, homogeneous recurrence relation with constant coefficients, of order?

Remark

Linear, homogeneous recurrence relations have many solutions. Indeed if $f(n)$ and $g(n)$ are solutions then so is $\alpha f(n)+\beta g(n)$.

Answer (continued)

(1) For the second equation we have:
(2)

$$
b_{n, 5}=b_{n-1,4}+b_{n-5,5}
$$

(3) Again, this is a linear, homogeneous recurrence relation with constant coefficients, of order ?.

Remark

Linear, homogeneous recurrence relations have many solutions. Indeed if $f(n)$ and $g(n)$ are solutions then so is $\alpha f(n)+\beta g(n)$.
If $f(n)$ and $g(n)$ are solutions to a non homgeneous recurrence relation then $f(n)-g(n)$ is a solution to the associated homogeneous recurrence relation.

Remark

This means that in order to solve a non homogeneous linear recurrence relation all we need to do is find the general solution $g(n)$ to the homogeneous part and a particular solution $p(n)$ to the non homogenesous equation.

The general solution will be: $g(n)+p(n)$.
The following example demonstrates this:

Remark

This means that in order to solve a non homogeneous linear recurrence relation all we need to do is find the general solution $g(n)$ to the homogeneous part and a particular solution $p(n)$ to the non homogenesous equation.
The general solution will be: $g(n)+p(n)$.
The following example demonstrates this:

Example

Solve: $a_{n}=2 a_{n-1}+3 n-1$.

Remark

This means that in order to solve a non homogeneous linear recurrence relation all we need to do is find the general solution $g(n)$ to the homogeneous part and a particular solution $p(n)$ to the non homogenesous equation.
The general solution will be: $g(n)+p(n)$.
The following example demonstrates this:

Example

Solve: $a_{n}=2 a_{n-1}+3 n-1$.
(1) The homogeneous part is: $b_{n}=2 b_{n-1}$.

Remark

This means that in order to solve a non homogeneous linear recurrence relation all we need to do is find the general solution $g(n)$ to the homogeneous part and a particular solution $p(n)$ to the non homogenesous equation.
The general solution will be: $g(n)+p(n)$.
The following example demonstrates this:

Example

Solve: $a_{n}=2 a_{n-1}+3 n-1$.
(1) The homogeneous part is: $b_{n}=2 b_{n-1}$.
(2) The general solution is: $b_{n}=\alpha 2^{n}$.

Remark

This means that in order to solve a non homogeneous linear recurrence relation all we need to do is find the general solution $g(n)$ to the homogeneous part and a particular solution $p(n)$ to the non homogenesous equation.
The general solution will be: $g(n)+p(n)$.
The following example demonstrates this:

Example

Solve: $a_{n}=2 a_{n-1}+3 n-1$.
(1) The homogeneous part is: $b_{n}=2 b_{n-1}$.
(2) The general solution is: $b_{n}=\alpha 2^{n}$.
(3) To find a particular solution we try $p_{n}=c n+d$.

Remark

This means that in order to solve a non homogeneous linear recurrence relation all we need to do is find the general solution $g(n)$ to the homogeneous part and a particular solution $p(n)$ to the non homogenesous equation.
The general solution will be: $g(n)+p(n)$.
The following example demonstrates this:

Example

Solve: $a_{n}=2 a_{n-1}+3 n-1$.
(1) The homogeneous part is: $b_{n}=2 b_{n-1}$.
(2) The general solution is: $b_{n}=\alpha 2^{n}$.
(3) To find a particular solution we try $p_{n}=c n+d$.
(4) Substituting in the original recurrence relation we get:
$c n+d=2(c(n-1)+d)+3 n-1$.

Remark

This means that in order to solve a non homogeneous linear recurrence relation all we need to do is find the general solution $g(n)$ to the homogeneous part and a particular solution $p(n)$ to the non homogenesous equation.
The general solution will be: $g(n)+p(n)$.
The following example demonstrates this:

Example

Solve: $a_{n}=2 a_{n-1}+3 n-1$.
(1) The homogeneous part is: $b_{n}=2 b_{n-1}$.
(2) The general solution is: $b_{n}=\alpha 2^{n}$.
(3) To find a particular solution we try $p_{n}=c n+d$.
(4) Substituting in the original recurrence relation we get:
$c n+d=2(c(n-1)+d)+3 n-1$.
(5) Solving for c and d we get: $a_{n}=\alpha 2^{n}-3 n-5$

Solving Linear Homogeneous Recurrence Relations

Remark

To simplify notation we shall limit our discussion to second order recurrence relations. The extension to higher order is straight forward.

Solving Linear Homogeneous Recurrence Relations

Remark

To simplify notation we shall limit our discussion to second order recurrence relations. The extension to higher order is straight forward.

Theorem (observation)
Let $a_{n}=b \cdot a_{n-1}+c \cdot a_{n-2}+g(n), \quad a_{1}=\alpha, a_{2}=\beta$.
For each $k \geq 3, a_{k}$ is uniquely determined.

Solving Linear Homogeneous Recurrence Relations

Remark

To simplify notation we shall limit our discussion to second order recurrence relations. The extension to higher order is straight forward.

Theorem (observation)
Let $a_{n}=b \cdot a_{n-1}+c \cdot a_{n-2}+g(n), \quad a_{1}=\alpha, a_{2}=\beta$.
For each $k \geq 3, a_{k}$ is uniquely determined.

Definition

$a_{1}=\alpha, a_{2}=\beta$ are called the initial conditions.

Solving Linear Homogeneous Recurrence Relations

Remark

To simplify notation we shall limit our discussion to second order recurrence relations. The extension to higher order is straight forward.

Theorem (observation)
Let $a_{n}=b \cdot a_{n-1}+c \cdot a_{n-2}+g(n), \quad a_{1}=\alpha, a_{2}=\beta$.
For each $k \geq 3, a_{k}$ is uniquely determined.

Definition

$a_{1}=\alpha, a_{2}=\beta$ are called the initial conditions.

Corollary

Any solution that satisfies the recurrence relation and initial conditions is THE ONLY solution.

Definition

Let $a_{n}=b a_{n-1}+c a_{n-2}$.
The quadratic equation $x^{2}-b x-c=0$ is called the characteritic equation of the recurrence relation.

Definition

Let $a_{n}=b a_{n-1}+c a_{n-2}$.
The quadratic equation $x^{2}-b x-c=0$ is called the characteritic equation of the recurrence relation.

Theorem (Solving Linear Homogeneous RR with Constant Coefficients)

Definition

Let $a_{n}=b a_{n-1}+c a_{n-2}$.
The quadratic equation $x^{2}-b x-c=0$ is called the characteritic equation of the recurrence relation.

Theorem (Solving Linear Homogeneous RR with Constant Coefficients)
(1) Let $a_{n}=b \cdot a_{n-1}+c \cdot a_{n-2}$.

Definition

Let $a_{n}=b a_{n-1}+c a_{n-2}$.
The quadratic equation $x^{2}-b x-c=0$ is called the characteritic equation of the recurrence relation.

Theorem (Solving Linear Homogeneous RR with Constant Coefficients)
(1) Let $a_{n}=b \cdot a_{n-1}+c \cdot a_{n-2}$.
(2) Let r_{1}, r_{2} be the roots of the characteristic equation.

Definition

Let $a_{n}=b a_{n-1}+c a_{n-2}$.
The quadratic equation $x^{2}-b x-c=0$ is called the characteritic equation of the recurrence relation.

Theorem (Solving Linear Homogeneous RR with Constant Coefficients)
(1) Let $a_{n}=b \cdot a_{n-1}+c \cdot a_{n-2}$.
(2) Let r_{1}, r_{2} be the roots of the characteristic equation.
(3) Then the general solution of this recurrence relation is

$$
a_{n}=\alpha r_{1}^{n}+\beta r_{2}^{n}
$$

Definition

Let $a_{n}=b a_{n-1}+c a_{n-2}$.
The quadratic equation $x^{2}-b x-c=0$ is called the characteritic equation of the recurrence relation.

Theorem (Solving Linear Homogeneous RR with Constant Coefficients)
(1) Let $a_{n}=b \cdot a_{n-1}+c \cdot a_{n-2}$.
(2) Let r_{1}, r_{2} be the roots of the characteristic equation.
(3) Then the general solution of this recurrence relation is

$$
a_{n}=\alpha r_{1}^{n}+\beta r_{2}^{n}
$$

(4) If $r_{1}=r_{2}$ then the general solution is $a_{n}=\alpha r^{n}+\beta n r^{n}$

Chứng minh.

We need to show two things:

Chứng minh.
We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).

Chứng minh.
We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).
(2) Every other solution is of this form.

Chứng minh.
We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).
(2) Every other solution is of this form.

Chứng minh.

We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).
(2) Every other solution is of this form.

We note that since the recurrence relation is linear it is enough to prove that $r_{i}^{n}=b r_{i}^{n-1}+c r_{i}^{n-2}$
(1) $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n-2}\left(b r_{i}+c\right)$

Chứng minh.
We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).
(2) Every other solution is of this form.

We note that since the recurrence relation is linear it is enough to prove that $r_{i}^{n}=b r_{i}^{n-1}+c r_{i}^{n-2}$
(1) $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n-2}\left(b r_{i}+c\right)$
(2) Since r_{i} are roots of the characteristic equation we have:

$$
r_{i}^{2}=b r_{i}+c
$$

Chứng minh.

We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).
(2) Every other solution is of this form.

We note that since the recurrence relation is linear it is enough to prove that $r_{i}^{n}=b r_{i}^{n-1}+c r_{i}^{n-2}$
(1) $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n-2}\left(b r_{i}+c\right)$
(2) Since r_{i} are roots of the characteristic equation we have: $r_{i}^{2}=b r_{i}+c$
(3) Substituting we get: $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n}$

Chứng minh.

We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).
(2) Every other solution is of this form.

We note that since the recurrence relation is linear it is enough to prove that $r_{i}^{n}=b r_{i}^{n-1}+c r_{i}^{n-2}$
(1) $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n-2}\left(b r_{i}+c\right)$
(2) Since r_{i} are roots of the characteristic equation we have:

$$
r_{i}^{2}=b r_{i}+c
$$

(3) Substituting we get: $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n}$
(4) Thus $\alpha r_{1}^{n}+\beta r_{2}^{n}$ solves the recurrence relation.

Chứng minh.

We need to show two things:
(1) $a_{n}=b r_{1}^{n}+c r_{2}^{n}$ is a solution (or $a_{n}=b r^{n}+c n r^{n}$ is a solution in case $r_{1}=r_{2}$).
(2) Every other solution is of this form.

We note that since the recurrence relation is linear it is enough to prove that $r_{i}^{n}=b r_{i}^{n-1}+c r_{i}^{n-2}$
(1) $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n-2}\left(b r_{i}+c\right)$
(2) Since r_{i} are roots of the characteristic equation we have:
$r_{i}^{2}=b r_{i}+c$.
(3) Substituting we get: $b r_{i}^{n-1}+c r_{i}^{n-2}=r_{i}^{n}$
(4) Thus $\alpha r_{1}^{n}+\beta r_{2}^{n}$ solves the recurrence relation.
(5) As previously proved, $r^{n}=b r^{n-1}+c r^{n-2}$. Taking the derivative we get: $n r^{n-1}=b(n-1) r^{n-2}+c(n-2) r^{n-3}$ and if we multiply both sides by r we get: $n r^{n}=b(n-1) r^{n-1}+c(n-2) r^{n-2}$

continued.

It remains to show that these are the general solutions.

continued.

It remains to show that these are the general solutions.

continued.

It remains to show that these are the general solutions.
It is enough to show that if for any choice of a_{0}, a_{1} there is a solution of these forms for which a_{0}, a_{1} will be matched.
(1) Let $a_{0}=m, a_{1}=k$. We need to show that we can choose α and β so that $\alpha r_{1}^{0}+\beta r_{2}^{0}=m$ and $\alpha r_{1}+\beta r_{2}=k$.

continued.

It remains to show that these are the general solutions.
It is enough to show that if for any choice of a_{0}, a_{1} there is a solution of these forms for which a_{0}, a_{1} will be matched.
(1) Let $a_{0}=m, a_{1}=k$. We need to show that we can choose α and β so that $\alpha r_{1}^{0}+\beta r_{2}^{0}=m$ and $\alpha r_{1}+\beta r_{2}=k$.
(2) This is a set of two linear equations in two unknowns. Its determinant is $r_{1}-r_{2} \neq 0$ hence it has a solution.

continued.

It remains to show that these are the general solutions.
It is enough to show that if for any choice of a_{0}, a_{1} there is a solution of these forms for which a_{0}, a_{1} will be matched.
(1) Let $a_{0}=m, a_{1}=k$. We need to show that we can choose α and β so that $\alpha r_{1}^{0}+\beta r_{2}^{0}=m$ and $\alpha r_{1}+\beta r_{2}=k$.
(2) This is a set of two linear equations in two unknowns. Its determinant is $r_{1}-r_{2} \neq 0$ hence it has a solution.
(3) In the second case we have: $\alpha=m$ and $\alpha+\beta=k$ which obviously has a solution.

Particular solutions

It remains to deal with identifying particular solutions. The best approach is an "intelligent" guess.

Particular solutions

It remains to deal with identifying particular solutions. The best approach is an "intelligent" guess.

- If $f(n)$ is a polynomial, try a polynomial of same degree, or higher.

Particular solutions

It remains to deal with identifying particular solutions. The best approach is an "intelligent" guess.

- If $f(n)$ is a polynomial, try a polynomial of same degree, or higher.
- If it is a^{n} try an exponential function if a is not a root of the characteristic equation.

Particular solutions

It remains to deal with identifying particular solutions. The best approach is an "intelligent" guess.

- If $f(n)$ is a polynomial, try a polynomial of same degree, or higher.
- If it is a^{n} try an exponential function if a is not a root of the characteristic equation.
- If it is, try cnan.

Particular solutions

It remains to deal with identifying particular solutions. The best approach is an "intelligent" guess.

- If $f(n)$ is a polynomial, try a polynomial of same degree, or higher.
- If it is a^{n} try an exponential function if a is not a root of the characteristic equation.
- If it is, try cna^{n}.
- In general, try a function "similar" to $f(n)$. The following examples will demonstrate the general approach.

Particular solutions

It remains to deal with identifying particular solutions. The best approach is an "intelligent" guess.

- If $f(n)$ is a polynomial, try a polynomial of same degree, or higher.
- If it is a^{n} try an exponential function if a is not a root of the characteristic equation.
- If it is, try cna^{n}.
- In general, try a function "similar" to $f(n)$. The following examples will demonstrate the general approach.
- The following examples will demonstrate this strategy.

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.
- Substitute we get: $c \cdot 2^{n}=3 \cdot c \cdot 2^{n-1}+2^{n}$

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.
- Substitute we get: $c \cdot 2^{n}=3 \cdot c \cdot 2^{n-1}+2^{n}$
- Solution: $a_{n}=k \cdot 3^{n}-2^{n+1}$.

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.
- Substitute we get: $c \cdot 2^{n}=3 \cdot c \cdot 2^{n-1}+2^{n}$
- Solution: $a_{n}=k \cdot 3^{n}-2^{n+1}$.

2. Solve $a_{n}=3 a_{n-1}+3^{n}$.

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.
- Substitute we get: $c \cdot 2^{n}=3 \cdot c \cdot 2^{n-1}+2^{n}$
- Solution: $a_{n}=k \cdot 3^{n}-2^{n+1}$.

2. Solve $a_{n}=3 a_{n-1}+3^{n}$.

- Try cn3n.

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.
- Substitute we get: $c \cdot 2^{n}=3 \cdot c \cdot 2^{n-1}+2^{n}$
- Solution: $a_{n}=k \cdot 3^{n}-2^{n+1}$.

2. Solve $a_{n}=3 a_{n-1}+3^{n}$.

- Try cn3 ${ }^{n}$.
- Substitute: $c n 3^{n}=3 c(n-1) 3^{n-1}+3^{n}$.

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.
- Substitute we get: $c \cdot 2^{n}=3 \cdot c \cdot 2^{n-1}+2^{n}$
- Solution: $a_{n}=k \cdot 3^{n}-2^{n+1}$.

2. Solve $a_{n}=3 a_{n-1}+3^{n}$.

- Try cn3 ${ }^{n}$.
- Substitute: $c n 3^{n}=3 c(n-1) 3^{n-1}+3^{n}$.
- Solve for $\mathrm{c}: ~ c=1$

Examples

1. Solve: $a_{n}=3 a_{n-1}+2^{n}$.

- Try: $p(n)=c 2^{n}$.
- Substitute we get: $c \cdot 2^{n}=3 \cdot c \cdot 2^{n-1}+2^{n}$
- Solution: $a_{n}=k \cdot 3^{n}-2^{n+1}$.

2. Solve $a_{n}=3 a_{n-1}+3^{n}$.

- Try cn3 ${ }^{n}$.
- Substitute: $c n 3^{n}=3 c(n-1) 3^{n-1}+3^{n}$.
- Solve for c: $c=1$
- General solution: $a_{n}=\alpha 3^{n}+n \cdot 3^{n}$

Examples

3. Solve: $a_{n}=2 a_{n-1}-a_{n-2}+2 n$.

Examples

3. Solve: $a_{n}=2 a_{n-1}-a_{n-2}+2 n$.

- $2 n$ is a solution of the homogeneous equation, so we try $p(n)=c n^{2}$ a polynomial of degree 2.

Examples

3. Solve: $a_{n}=2 a_{n-1}-a_{n-2}+2 n$.

- $2 n$ is a solution of the homogeneous equation, so we try $p(n)=c n^{2}$ a polynomial of degree 2.
- Substitute: $c n^{2}=2 c(n-1)^{2}-c(n-2)^{2}+2 n$. Does not produce a solution.

Examples

3. Solve: $a_{n}=2 a_{n-1}-a_{n-2}+2 n$.

- $2 n$ is a solution of the homogeneous equation, so we try $p(n)=c n^{2}$ a polynomial of degree 2.
- Substitute: $c n^{2}=2 c(n-1)^{2}-c(n-2)^{2}+2 n$. Does not produce a solution.
- So we try a polynomial of degree $3: p(n)=c n^{2}+d n^{3}$.

Examples

3. Solve: $a_{n}=2 a_{n-1}-a_{n-2}+2 n$.

- $2 n$ is a solution of the homogeneous equation, so we try $p(n)=c n^{2}$ a polynomial of degree 2.
- Substitute: $c n^{2}=2 c(n-1)^{2}-c(n-2)^{2}+2 n$. Does not produce a solution.
- So we try a polynomial of degree $3: p(n)=c n^{2}+d n^{3}$.
- Substitute and solve for c, d we find that $\frac{1}{3} n^{3}+n^{2}$ is a particular solution.

Examples

3. Solve: $a_{n}=2 a_{n-1}-a_{n-2}+2 n$.

- $2 n$ is a solution of the homogeneous equation, so we try $p(n)=c n^{2}$ a polynomial of degree 2.
- Substitute: $c n^{2}=2 c(n-1)^{2}-c(n-2)^{2}+2 n$. Does not produce a solution.
- So we try a polynomial of degree $3: p(n)=c n^{2}+d n^{3}$.
- Substitute and solve for c, d we find that $\frac{1}{3} n^{3}+n^{2}$ is a particular solution.
- So the general solution is: $a_{n}=\alpha+\beta n+n^{2}+\frac{1}{3} n^{3}$.

