Discrete Mathematics Assignment RR

Moshe Rosenfeld

Hanoi 2012 moishe@u.washington.edu

Due: Tuesday (Dec 11)

1 Recurrence Relations

1.1 Telescoping

Use the telescoping technique to find t recurrence relation for the following sequences:

- 1. 1, 3, 6, 10, 15, 21...
- 2. $1, 2, 3, 5, 16, 231, \ldots$
- 3. Solve $a_n = \sqrt{a_{n-1} \cdot a_{n-2}}$, $a_0 = 2, a_1 = 1$. What is $\lim_{n \to \infty} a_n$.

1.2 Linear recurrence Relations

- 1. Solve: $a_n = 2a_{n-1} a_{n-3}, a_0 = 1, a_2 = 0, a_3 = 2.$
- 2. Find the general solution to: $a_n = 4a_{n-1} 4a_{n-2} + 3n$

1.3 Misc recurrence relations

3. A domino is a 2×1 tile. In how many different ways can you arrange n dominoes to form a $2 \times n$ strip?*

4. How many binary sequences $b_1 b_2 \dots b_8$ such that $\sum_{n=1}^8 = 4$ and for each $1 \le j \le 8$ $\sum_{i=1}^j b_j \ge \frac{j}{2}$ are there?

- 5. * Obtaun a recurrence relation for b_n , the number of binary sequences of length 2n containing exactly n 1's such that $\sum_{i=1}^{j} b_j \ge \frac{j}{2}$.
- 6. * Prove that for every positive integer n there is a an integer m such that $(\sqrt(2)-1)^n=\sqrt{m+1}-\sqrt{m}$
- 7. * Prove that $(\sqrt{170} + 13)^n$ has at least n zeros after the decimal point.*