Discrete Mathematics Assignment RR

Moshe Rosenfeld

Hanoi 2012
moishe@u.washington.edu

Due: Tuesday (Dec 11)

1 Recurrence Relations

1.1 Telescoping

Use the telescoping technique to find t recurrence relation for the following sequences:

1. $1,3,6,10,15,21 \ldots$
2. $1,2,3,5,16,231, \ldots$
3. Solve $a_{n}=\sqrt{a_{n-1} \cdot a_{n-2}}, \quad a_{0}=2, a_{1}=1$. What is $\lim _{n \rightarrow \infty} a_{n}$.

1.2 Linear recurrence Relations

1. Solve: $a_{n}=2 a_{n-1}-a_{n-3}, a_{0}=1, a_{2}=0, a_{3}=2$.
2. Find the general solution to: $a_{n}=4 a_{n-1}-4 a_{n-2}+3 n$

1.3 Misc recurrence relations

3. A domino is a 2×1 tile. In how many different ways can you arrange n dominoes to form a $2 \times n$ strip?*
4. How many binary sequences $b_{1} b_{2} \ldots b_{8}$ such that $\sum_{n=1}^{8}=4$ and for each $1 \leq j \leq 8 \quad \sum_{i=1}^{j} b_{j} \geq \frac{j}{2}$ are there?
5. * Obtaun a recurrence relation for b_{n}, the number of binary sequences of length $2 n$ containing exactly $n 1^{\prime} s$ such that $\sum_{i=1}^{j} b_{j} \geq \frac{j}{2}$.
6. * Prove that for every positive integer n there is a an integer m such that $(\sqrt{(} 2)-1)^{n}=\sqrt{m+1}-\sqrt{m}$
7. * Prove that $(\sqrt{170}+13)^{n}$ has at least n zeros after the decimal point.*
