Discrete Mathematics and Applications

Moshe Rosenfeld
Hanoi 2012
moishe@u. washington.edu

1 Assignment No. 8: Counting

Due: Tuesday, Nov. (to be announced)
Please submit your answer in a neat, readable properly organized format.

2 Elemntary counting

1. A multiple choice test has 40 questions. Each question has four possible answer (with only one correct answer).
a. In how many ways can a student answer all 40 questions?
b. In how many ways can a student answer all question so that exactly 30 questions are answered correctly?
c. In how many ways can a student answer the questions if he can leave some answers blank?
2. How many positive integers <10000 :
a. Are divisible by 13 .
b. Are divisible by 13 or by 15 .
c. Are divisible by 13 and by 17 but not by both.
d. Are relatively prime to 13 and 17 .
3. A palindrome is a string whose reversal is the same as the original string, ABBA is a palindrome. How many bit strings of length n are plaindromes?

2.1 Proofs

1. Prove that among any $n+1$ positive integers none greater than $2 n$ there must be a pair of integers n, m such that n divides m (notation: $n \mid m$).
2. a. Prove that there is an integer $k<1000$ such that the absolute value of the difference between $k \sqrt{2}$ and its nearest integer is $<\frac{1}{1000}$.
b. * Let x be an irrational number and n a positive integer. Prove that there is an integer $j \leq n$ such that the absolute value of the difference between $j x$ and the nearest integer to $j x$ is less than $\frac{1}{n}$.
3. Prove that there are infinitely many prime numbers of the form $4 k+3$.
4. (SAGE): 11 is a palidnrome which is also a prime. Can you find a prime p which is a palindrome and is 10 digits long?
5. (SAGE) Is there a prime number among all integers with 10 digits that contains each decimal digit exactly once?
