Do all infinite sets have the same size?

Ngày 10 tháng 9 năm 2012

Do all infinite sets

1/7

-≣->

Ngày 10 tháng 9 năm 2012

Theorem (1) $\forall A, \mid P(A) \mid > \mid A \mid.$

Theorem (1) $\forall A, \mid P(A) \mid > \mid A \mid.$

Theorem (1) $\forall A, | P(A) | > | A |$.

Theorem (2) The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

E nace

Theorem (1) $\forall A, | P(A) | > | A |$.

Theorem (2) The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

E nace

Theorem (1) $\forall A, | P(A) | > | A |$.

Theorem (2) The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

Theorem (3)

The set of functions $f : N \to \{0, 1\}$ is not countable.

Theorem (1) $\forall A, | P(A) | > | A |$.

Theorem (2) The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

Theorem (3)

The set of functions $f : N \to \{0, 1\}$ is not countable.

Theorem (1) $\forall A, | P(A) | > | A |$.

Theorem (2) The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

Theorem (3) The set of functions $f : N \to \{0, 1\}$ is not countable.

Do all intinite se

■▶ ■ のへの

1/7

Ngày 10 tháng 9 năm 2012

Theorem (4) If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

Theorem (1) $\forall A, | P(A) | > | A |$.

Theorem (2) The set $\{x \mid 0 < x < 1, x \in R\}$ is not countable.

Theorem (3) The set of functions $f : N \to \{0, 1\}$ is not countable.

Theorem (4) If $|A| \leq |B|$ and $|B| \leq |A|$ then |A| = |B|

Theorem (5)

The set of binary sequences is not countable.

Do all infinite sets

- 2

900

[Sketch of a proof for Theorem 1]

We will prove that there is no onto function $f : A \to P(A)$. Indeed given any function $f : A \to P(A)$ let $S = \{a \in A \mid a \notin f(a)\}.$ (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

[Sketch of a proof for Theorem 1]

We will prove that there is no onto function $f : A \to P(A)$. Indeed given any function $f : A \to P(A)$ let $S = \{a \in A \mid a \notin f(a)\}.$ (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Assume that S = f(s) for some $s \in A$.

[Sketch of a proof for Theorem 1]

We will prove that there is no onto function $f : A \rightarrow P(A)$. Indeed given any function $f : A \rightarrow P(A)$ let $S = \{a \in A \mid a \notin f(a)\}.$ (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Assume that S = f(s) for some $s \in A$.

Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.

[Sketch of a proof for Theorem 1]

We will prove that there is no onto function $f : A \to P(A)$. Indeed given any function $f : A \to P(A)$ let $S = \{a \in A \mid a \notin f(a)\}.$ (Recall that $f(a) \subset A$, or $f(a) \in P(A)$).

Assume that S = f(s) for some $s \in A$.

Whether $s \in f(s)$ or $s \notin f(s)$ we reach a contradicion.

Fill in the details.

Conclusion: since there is an injection $g : A \to P(A)$ and there is no onto function $f : A \to P(A)$ we conclude that |A| < |P(A)|.

all infinite sets

Noày 10 tháng 9 năm 2012

[Sketch of a proof for Theorem 2]

For every countable set $A \subset \{x \mid 0 < x < 1, x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$.

[Sketch of a proof for Theorem 2]

For every countable set $A \subset \{x \mid 0 < x < 1, x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$. Let $\{x_1, x_2, \dots, x_n, \dots\}$ be a countable subset of \mathbb{U} . Let

 $x_n = 0.x_{n,1}x_{n,2} \dots x_{n,n}x_{n,n+1} \dots$ be the decimal expansion of x_n .

[Sketch of a proof for Theorem 2]

For every countable set $A \subset \{x \mid 0 < x < 1, x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$. Let $\{x_1, x_2, \ldots, x_n, \ldots\}$ be a countable subset of \mathbb{U} . Let $x_n = 0.x_{n,1}x_{n,2} \ldots x_{n,n}x_{n,n+1} \ldots$ be the decimal expansion of x_n . Let $y = 0.y_1y_2 \ldots y_n \ldots$ be defined as follows: Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, y_n \neq x_{n,n}$.

infinite sets Ngày 10 tháng 9 năm 2012 3/7

[Sketch of a proof for Theorem 2]

For every countable set $A \subset \{x \mid 0 < x < 1, x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$. Let $\{x_1, x_2, \ldots, x_n, \ldots\}$ be a countable subset of \mathbb{U} . Let $x_n = 0.x_{n,1}x_{n,2} \ldots x_{n,n}x_{n,n+1} \ldots$ be the decimal expansion of x_n . Let $y = 0.y_1y_2 \ldots y_n \ldots$ be defined as follows: Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, y_n \neq x_{n,n}$. Fill in the details, that is prove that $y \notin A$.

infinite se

コントロント・ボット・ボット・ション

3/7

Noày 10 tháng 9 năm 2012

[Sketch of a proof for Theorem 2]

For every countable set $A \subset \{x \mid 0 < x < 1, x \in R\} = \mathbb{U}$ we shall find a real number $y \notin A$. Let $\{x_1, x_2, \ldots, x_n, \ldots\}$ be a countable subset of \mathbb{U} . Let $x_n = 0.x_{n,1}x_{n,2} \ldots x_{n,n}x_{n,n+1} \ldots$ be the decimal expansion of x_n . Let $y = 0.y_1y_2 \ldots y_n \ldots$ be defined as follows: Let $y_n = x_{n,n} + 5 \pmod{10}$. We want to make sure that $\forall n, y_n \neq x_{n,n}$. Fill in the details, that is prove that $y \notin A$.

Remark

This proof technique is called the Diagonal Method. It is used on many occaisons. For instance Theorem 1 is an abstract form of this method.

Do all infinite sets '

토▶ 토 ���

3/7

Noày 10 tháng 9 năm 2012

Here we go again. [Theorem 3, proof sketch]

It is enough to show that there is a bijection between the set of functions: $\{f : N \to \{0, 1\}\}$ and P(N).

Here we go again. [Theorem 3, proof sketch]

It is enough to show that there is a bijection between the set of functions: $\{f : N \to \{0, 1\}\}$ and P(N). Let $F(f) = \{i \mid f(i) = 1\}$. Show that this is a bijection between P(n) and the functions.

Here we go again. [Theorem 3, proof sketch]

It is enough to show that there is a bijection between the set of functions: $\{f : N \to \{0, 1\}\}$ and P(N). Let $F(f) = \{i \mid f(i) = 1\}$. Show that this is a bijection between P(n) and the functions.

Corolary

There are functions $f:N\to\{0,1\}$ (decision problems) that are not programmable.

Here we go again. [Theorem 3, proof sketch]

It is enough to show that there is a bijection between the set of functions: $\{f : N \to \{0, 1\}\}$ and P(N). Let $F(f) = \{i \mid f(i) = 1\}$. Show that this is a bijection between P(n) and the functions.

Corolary

There are functions $f:N\to\{0,1\}$ (decision problems) that are not programmable.

Here we go again. [Theorem 3, proof sketch]

It is enough to show that there is a bijection between the set of functions: $\{f : N \to \{0, 1\}\}$ and P(N). Let $F(f) = \{i \mid f(i) = 1\}$. Show that this is a bijection between P(n) and the functions.

Corolary

There are functions $f:N\to\{0,1\}$ (decision problems) that are not programmable.

Each program that implements a decision problem is stored in memory as a finite binary sequence. There are only countably many finite binary sequences. Hence there are non computable functions.

Do all infinite sets

Noày 10 tháng 9 năm 2012

[of Theorem 4]

The theorem says that if there are 1 - 1 functions $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

[of Theorem 4]

The theorem says that if there are 1 - 1 functions

 $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following *chains*, (directed paths):

 $\dots \rightarrow a \rightarrow f(a) \rightarrow g(f(a) \dots$

[of Theorem 4]

The theorem says that if there are 1 - 1 functions

 $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following *chains*, (directed paths):

 $\dots \rightarrow a \rightarrow f(a) \rightarrow g(f(a) \dots$

Verify: Each chain is one of the following four types:

A finite cycle with 2n "nodes" n, members of A interlaced with n members of B.

Noày 10 tháng 9 năm 2012

[of Theorem 4]

The theorem says that if there are 1 - 1 functions

 $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following chains, (directed paths):

 $\ldots \rightarrow a \rightarrow f(a) \rightarrow g(f(a) \ldots$

Verify: Each chain is one of the following four types:

A finite cycle with 2n "nodes" n, members of A interlaced with n members of B.

Noày 10 tháng 9 năm 2012

5/7

A doubly infinite chain of interlaced nodes from A and B.

[of Theorem 4]

The theorem says that if there are 1 - 1 functions

 $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following chains, (directed paths):

 $\ldots \rightarrow a \rightarrow f(a) \rightarrow g(f(a) \ldots$

Verify: Each chain is one of the following four types:

- A finite cycle with 2n "nodes" n, members of A interlaced with n members of B.
- A doubly infinite chain of interlaced nodes from A and B.
- **③** An infinite chain $a \rightarrow b \rightarrow a' \rightarrow b' \rightarrow \dots$

Do all infinite se

Noày 10 tháng 9 năm 2012

[of Theorem 4]

The theorem says that if there are 1 - 1 functions

 $f: A \rightarrow B$ and $g: B \rightarrow A$ then there is a bijection between A and B.

Consider the following *chains*, (directed paths):

 $\ldots \rightarrow a \rightarrow f(a) \rightarrow g(f(a) \ldots$

Verify: Each chain is one of the following four types:

A finite cycle with 2n "nodes" n, members of A interlaced with n members of B.

Noày 10 tháng 9 năm 2012

- A doubly infinite chain of interlaced nodes from A and B.
- An infinite chain $a \rightarrow b \rightarrow a' \rightarrow b' \rightarrow \dots$
- An infinite chain $b \rightarrow a \rightarrow b' \rightarrow a' \rightarrow \dots$

Proof of Theorem 4, continued

We note that each $a \in A$, and $b \in B$ is included in exactly one chain.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a successor in B

Noày 10 tháng 9 năm 2012

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a successor in BEach $a \in A$ has a predecessor in B except for the head of the chains in (3).

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a successor in BEach $a \in A$ has a predecessor in B except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a successor in BEach $a \in A$ has a predecessor in B except for the head of the chains in (3). Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in *B* except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

The mapping F(a) = b where $a \rightarrow b$, if *a* belongs to chains in (1), (2) or (3) and F(a) = b where $b \rightarrow a$ if *a* is in a chain of (4) is a bijection between A and B.

Noày 10 tháng 9 năm 2012

We note that each $a \in A$, and $b \in B$ is included in exactly one chain. Each $a \in A$ has a successor in B

Each $a \in A$ has a predecessor in *B* except for the head of the chains in (3).

Each $b \in B$ has a successor in A.

Each $b \in B$ has a predecessor in A except for the head of the chains in (4).

The mapping F(a) = b where $a \rightarrow b$, if *a* belongs to chains in (1), (2) or (3) and F(a) = b where $b \rightarrow a$ if *a* is in a chain of (4) is a bijection between A and B.

Do all infinite se

Noày 10 tháng 9 năm 2012

6/7

Verify this assertion.

In Set Theory this is known as Bernstein's Lemma.

Surprise "Squaring the Circle"

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets A_1, A_2, B_1, B_2 such that A_i and B_i are similar.

Surprise "Squaring the Circle"

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets A_1, A_2, B_1, B_2 such that A_i and B_i are similar.

Surprise "Squaring the Circle"

Remark

There is a surprising consequence of this famous lemma. If you take two sets of points A and B in the plane, and if each set contains a disk, then each set can be disected into two sets A_1, A_2, B_1, B_2 such that A_i and B_i are similar.

 For example: these two sets can be disected into a pair of similar sets!

 0

 Do all infinite sets

 Ngày 10 tháng 9 năm 2012

 7/7