Recall:

A relation ℝ between two sets A and B is a subset of A × B.
 If (a, b) ∈ ℝ we say that a ∝ b.

Recall:

- A relation ℝ between two sets A and B is a subset of A × B.
 If (a, b) ∈ ℝ we say that a ∝ b.
- A relation on a set A is a subset of $A \times A$.

< 回 > < 三 > < 三 >

Recall:

- A relation ℝ between two sets A and B is a subset of A × B.
 If (a, b) ∈ ℝ we say that a ∝ b.
- A relation on a set A is a subset of $A \times A$.
- A relation \mathbb{R} on a set A is:

< 回 > < 三 > < 三 >

Recall:

- A relation ℝ between two sets A and B is a subset of A × B.
 If (a, b) ∈ ℝ we say that a ∝ b.
- A relation on a set A is a subset of $A \times A$.
- A relation \mathbb{R} on a set A is:
- **1** Reflexive if $a \propto a \ \forall a \in A$

A B F A B F

Recall:

- A relation ℝ between two sets A and B is a subset of A × B.
 If (a, b) ∈ ℝ we say that a ∝ b.
- A relation on a set A is a subset of $A \times A$.
- A relation \mathbb{R} on a set A is:
- **1** Reflexive if $a \propto a \forall a \in A$
- 2 Symmetric if $a \propto b \rightarrow b \propto a$

A B F A B F

Recall:

- A relation ℝ between two sets A and B is a subset of A × B.
 If (a, b) ∈ ℝ we say that a ∝ b.
- A relation on a set A is a subset of A × A.
- A relation \mathbb{R} on a set A is:
- **1** Reflexive if $a \propto a \forall a \in A$
- 2 Symmetric if $a \propto b \rightarrow b \propto a$
- **③** Transitive if $a \propto b \wedge b \propto c \rightarrow a \propto c$

★ ∃ > < ∃ >

Let $a \propto b$ if $a, b \in Z^+$ and $\exists c \in Z^+$ such that $a^2 + b^2 = c^2$ Is this relation:

э

イロン イ理 とく ヨン イヨン

Let $a \propto b$ if $a, b \in Z^+$ and $\exists c \in Z^+$ such that $a^2 + b^2 = c^2$ Is this relation:

Reflexive?

э

イロン イ理 とく ヨン イヨン

Let $a \propto b$ if $a, b \in Z^+$ and $\exists c \in Z^+$ such that $a^2 + b^2 = c^2$ Is this relation:

- Reflexive?
- 2 Symmetirc?

3

Let $a \propto b$ if $a, b \in Z^+$ and $\exists c \in Z^+$ such that $a^2 + b^2 = c^2$ Is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

3

Let $(a, b) \propto (c, d)$ if $a, b, c, d \in Z^+$, $a \cdot d = b \cdot c$ Is this relation:

3

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, a \cdot d = b \cdot c$ Is this relation:

Reflexive?

3

Short First Subsection Name

Question 2.

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, \ a \cdot d = b \cdot c$ Is this relation:

- Reflexive?
- 2 Symmetirc?

3

Short First Subsection Name

Question 2.

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, \ a \cdot d = b \cdot c$ Is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

3

Short First Subsection Name

Question 2.

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, \ a \cdot d = b \cdot c$ Is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, \ a \cdot d = b \cdot c$ Is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

• Reflexive! $(a, b) \propto (a, b)$

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, \ a \cdot d = b \cdot c$ Is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

- Reflexive! $(a, b) \propto (a, b)$
- 3 Symmetric! $(a,b) \propto (c,d)$ then $(c,d) \propto (a,b)$

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, \ a \cdot d = b \cdot c$ Is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

• Reflexive!
$$(a, b) \propto (a, b)$$

3 Symmetric! $(a,b) \propto (c,d)$ then $(c,d) \propto (a,b)$

3 Transitive!
$$(a,b) \propto (c,d) \rightarrow a \cdot d = b \cdot c$$

 $(c,d) \propto (e,f) \rightarrow c \cdot f = d \cdot e$
 $\rightarrow a \cdot d \cdot c \cdot f = b \cdot c \cdot d \cdot e$
 $\rightarrow a \cdot f = b \cdot e$

Let $(a,b) \propto (c,d)$ if $a,b,c,d \in Z^+, \ a \cdot d = b \cdot c$ Is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

• Reflexive!
$$(a, b) \propto (a, b)$$

3 Symmetric! $(a,b) \propto (c,d)$ then $(c,d) \propto (a,b)$

3 Transitive!
$$(a,b) \propto (c,d) \rightarrow a \cdot d = b \cdot c$$

 $(c,d) \propto (e,f) \rightarrow c \cdot f = d \cdot e$
 $\rightarrow a \cdot d \cdot c \cdot f = b \cdot c \cdot d \cdot e$
 $\rightarrow a \cdot f = b \cdot e$

Remark

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

æ

イロン イ理 とく ヨン イヨン

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation: • Reflexive?

3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

- Reflexive?
- 2 Symmetirc?

3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

< ロ > < 同 > < 回 > < 回 >

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

• Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a + b \le a + b$

< ロ > < 同 > < 回 > < 回 >

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

- Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a + b \le a + b$
- **2** Symmetric NO. $\frac{1}{2} \propto \frac{2}{5}$ but $\frac{2}{5} \not \propto \frac{1}{2}$

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

- Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a + b \le a + b$
- **3** Symmetric NO. $\frac{1}{2} \propto \frac{2}{5}$ but $\frac{2}{5} \not\propto \frac{1}{2}$

・ロン ・四 ・ ・ ヨン ・ ヨン

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^+$ and $a + b \leq c + d$ is this relation:

- Reflexive?
- 2 Symmetirc?
- Transitive?

To see the answer hit PgDn

- Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a + b \le a + b$
- Symmetric NO. $\frac{1}{2} \propto \frac{2}{5}$ but $\frac{2}{5} \not\ll \frac{1}{2}$

Remark

This is an order relation on the positive rational numbers in which every non empty subset has a minimal element.

Let $m \propto n$, $n, m \in z^+$ if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

```
12 = 1100_2, \ 18 = 10010_2 \ \text{so} \ 12 \not\propto 18 21 = 10101_2 \ \text{so} \ 5 \propto 21
```

Prove that this is a partial order on Z^+ .

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

Let $m \propto n$, $n, m \in z^+$ if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

```
12 = 1100_2, \ 18 = 10010_2 \ \text{so} \ 12 \not\propto 18 21 = 10101_2 \ \text{so} \ 5 \propto 21
```

Prove that this is a partial order on Z^+ .

Let $m \propto n$, $n, m \in z^+$ if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

```
12 = 1100_2, \ 18 = 10010_2 \ \text{so} \ 12 \not\propto 18 21 = 10101_2 \ \text{so} \ 5 \propto 21
```

Prove that this is a partial order on Z^+ .

Proof.

We need to show that this relation is anti-symmetric and transitive.

Let $m \propto n$, $n, m \in z^+$ if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

```
12 = 1100_2, \ 18 = 10010_2 \ \text{so} \ 12 \not\propto 18
21 = 10101_2 \ \text{so} \ 5 \propto 21
```

Prove that this is a partial order on Z^+ .

- We need to show that this relation is anti-symmetric and transitive.
- 2 This relation is clearly reflexive.

Let $m \propto n$, $n, m \in z^+$ if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

```
12 = 1100_2, \ 18 = 10010_2 \ \text{so} \ 12 \not\propto 18
21 = 10101_2 \ \text{so} \ 5 \propto 21
```

Prove that this is a partial order on Z^+ .

- We need to show that this relation is anti-symmetric and transitive.
- Provide the second s
- **③** It is antisymmetric. If $n \neq m$ and $n \propto m$ then $m \not\propto n$

Let $m \propto n$, $n, m \in z^+$ if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

```
12 = 1100_2, \ 18 = 10010_2 \ \text{so} \ 12 \not\propto 18
21 = 10101_2 \ \text{so} \ 5 \propto 21
```

Prove that this is a partial order on Z^+ .

- We need to show that this relation is anti-symmetric and transitive.
- Provide the second s
- 3 It is antisymmetric. If $n \neq m$ and $n \propto m$ then $m \not\propto n$
- It is transitive! Follows directly from the definition.

Construct an example of a relation on Z^+ which is reflexive, symmetric but not transitive.

3

Construct an example of a relation on Z^+ which is reflexive, symmetric but not transitive.

To see the answer hit PgDn

< ロ > < 同 > < 回 > < 回 >

Construct an example of a relation on Z^+ which is reflexive, symmetric but not transitive.

To see the answer hit PgDn

< ロ > < 同 > < 回 > < 回 >

Construct an example of a relation on Z^+ which is reflexive, symmetric but not transitive.

To see the answer hit PgDn

Let $n \propto m$ if $\frac{a^3+b^3}{ab} \in Z^+$. Reflexive: $m \propto m$ becuase $\frac{a^3+a^3}{a^2} = 2a \in Z^+$ Symmetric: $m \propto n \rightarrow \frac{m^3+n^3}{nm} \in Z^+ \rightarrow n \propto m$ Transitive: This relation is not transitive. $2 \propto 4 \land 4 \propto 8$ but $2 \not\propto 8$ becuase $\frac{2^3+8^3}{16} = 32\frac{1}{2} \notin Z^+$.

Find the transitive closure of the relation: {((b, c), (b, e), (c, e), (d, a), (e, b), (e, c)} on the set {a, b, c, d, e}.

э

- Find the transitive closure of the relation:
 {((b, c), (b, e), (c, e), (d, a), (e, b), (e, c)} on the set {a, b, c, d, e}.
- Is the transitive closure symmetric?

< ロ > < 同 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ >

- Find the transitive closure of the relation: {((b, c), (b, e), (c, e), (d, a), (e, b), (e, c)} on the set {a, b, c, d, e}.
- Is the transitive closure symmetric?
- Is the transitive closure reflexive?

A (10) A (10)