Quick review.

Recall:

- A relation \mathbb{R} between two sets A and B is a subset of $A \times B$. If $(a, b) \in \mathbb{R}$ we say that $a \propto b$.

Quick review.

Recall:

- A relation \mathbb{R} between two sets A and B is a subset of $A \times B$. If $(a, b) \in \mathbb{R}$ we say that $a \propto b$.
- A relation on a set A is a subset of $A \times A$.

Quick review.

Recall:

- A relation \mathbb{R} between two sets A and B is a subset of $A \times B$. If $(a, b) \in \mathbb{R}$ we say that $a \propto b$.
- A relation on a set A is a subset of $A \times A$.
- A relation \mathbb{R} on a set A is:

Quick review.

Recall:

- A relation \mathbb{R} between two sets A and B is a subset of $A \times B$. If $(a, b) \in \mathbb{R}$ we say that $a \propto b$.
- A relation on a set A is a subset of $A \times A$.
- A relation \mathbb{R} on a set A is:
(1) Reflexive if $a \propto a \forall a \in A$

Quick review.

Recall:

- A relation \mathbb{R} between two sets A and B is a subset of $A \times B$. If $(a, b) \in \mathbb{R}$ we say that $a \propto b$.
- A relation on a set A is a subset of $A \times A$.
- A relation \mathbb{R} on a set A is:
(1) Reflexive if $a \propto a \forall a \in A$
(2) Symmetric if $a \propto b \rightarrow b \propto a$

Quick review.

Recall:

- A relation \mathbb{R} between two sets A and B is a subset of $A \times B$. If $(a, b) \in \mathbb{R}$ we say that $a \propto b$.
- A relation on a set A is a subset of $A \times A$.
- A relation \mathbb{R} on a set A is:
(1) Reflexive if $a \propto a \forall a \in A$
(2) Symmetric if $a \propto b \rightarrow b \propto a$
(3) Transitive if $a \propto b \wedge b \propto c \rightarrow a \propto c$

Question 1

Let $a \propto b$ if $a, b \in Z^{+}$and $\exists c \in Z^{+}$such that $a^{2}+b^{2}=c^{2}$ Is this relation:

Question 1

Let $a \propto b$ if $a, b \in Z^{+}$and $\exists c \in Z^{+}$such that $a^{2}+b^{2}=c^{2}$ Is this relation:
(1) Reflexive?

Question 1

Let $a \propto b$ if $a, b \in Z^{+}$and $\exists c \in Z^{+}$such that $a^{2}+b^{2}=c^{2}$ Is this relation:
(1) Reflexive?
(2) Symmetirc?

Question 1

Let $a \propto b$ if $a, b \in Z^{+}$and $\exists c \in Z^{+}$such that $a^{2}+b^{2}=c^{2}$ Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$ Is this relation:

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?
(2) Symmetirc?

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $(a, b) \propto(a, b)$

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $(a, b) \propto(a, b)$
(2) Symmetric! $(a, b) \propto(c, d)$ then $(c, d) \propto(a, b)$

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $(a, b) \propto(a, b)$
(2) Symmetric! $(a, b) \propto(c, d)$ then $(c, d) \propto(a, b)$
(3) Transitive! $(a, b) \propto(c, d) \rightarrow a \cdot d=b \cdot c$
$(c, d) \propto(e, f) \rightarrow c \cdot f=d \cdot e$
$\rightarrow a \cdot d \cdot c \cdot f=b \cdot c \cdot d \cdot e$
$\rightarrow a \cdot f=b \cdot e$

Question 2.

Let $(a, b) \propto(c, d)$ if $a, b, c, d \in Z^{+}, a \cdot d=b \cdot c$
Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $(a, b) \propto(a, b)$
(2) Symmetric! $(a, b) \propto(c, d)$ then $(c, d) \propto(a, b)$
(3) Transitive! $(a, b) \propto(c, d) \rightarrow a \cdot d=b \cdot c$
$(c, d) \propto(e, f) \rightarrow c \cdot f=d \cdot e$
$\rightarrow a \cdot d \cdot c \cdot f=b \cdot c \cdot d \cdot e$
$\rightarrow a \cdot f=b \cdot e$
Remark

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?
(2) Symmetirc?

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a+b \leq a+b$

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a+b \leq a+b$
(2) Symmetric NO. $\frac{1}{2} \propto \frac{2}{5}$ but $\frac{2}{5} \nless \frac{1}{2}$

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a+b \leq a+b$
(2) Symmetric NO. $\frac{1}{2} \propto \frac{2}{5}$ but $\frac{2}{5} \nless \frac{1}{2}$
(3) Transitive! $\frac{a}{b} \propto \frac{c}{d} \rightarrow a+b \leq c+d$

$$
\frac{c}{d} \propto \frac{e}{f} \rightarrow c+d \leq e+f \rightarrow a+b \leq e+f \rightarrow \frac{a}{b} \propto \frac{e}{f}
$$

Question 3

Let $\frac{a}{b} \propto \frac{c}{d}$ if $a, b, c, d \in Z^{+}$and $a+b \leq c+d$ Is this relation:
(1) Reflexive?
(2) Symmetirc?
(3) Transitive?

To see the answer hit PgDn
(1) Reflexive! $\frac{a}{b} \propto \frac{a}{b}$ because $a+b \leq a+b$
(2) Symmetric NO. $\frac{1}{2} \propto \frac{2}{5}$ but $\frac{2}{5} \nless \frac{1}{2}$
(3) Transitive! $\frac{a}{b} \propto \frac{c}{d} \rightarrow a+b \leq c+d$

$$
\frac{c}{d} \propto \frac{e}{f} \rightarrow c+d \leq e+f \rightarrow a+b \leq e+f \rightarrow \frac{a}{b} \propto \frac{e}{f}
$$

Remark

This is an order relation on the positive rational numbers in which every non empty subset has a minimal element.

Question 4

Let $m \propto n, n, m \in z^{+}$if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

```
Example
12=11002, 18=100102 so 12\not< 18
21=101012 so 5\propto21
```

Prove that this is a partial order on Z^{+}.

Question 4

Let $m \propto n, n, m \in z^{+}$if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

$12=1100_{2}, 18=10010_{2}$ so $12 \not \subset 18$
$21=10101_{2}$ so $5 \propto 21$
Prove that this is a partial order on Z^{+}.
Proof.

Question 4

Let $m \propto n, n, m \in z^{+}$if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

$12=1100_{2}, 18=10010_{2}$ so $12 \nless 18$
$21=10101_{2}$ so $5 \propto 21$
Prove that this is a partial order on Z^{+}.
Proof.
(1) We need to show that this relation is anti-symmetric and transitive.

Question 4

Let $m \propto n, n, m \in z^{+}$if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

$12=1100_{2}, 18=10010_{2}$ so $12 \nless 18$
$21=10101_{2}$ so $5 \propto 21$
Prove that this is a partial order on Z^{+}.
Proof.
(1) We need to show that this relation is anti-symmetric and transitive.
(2) This relation is clearly reflexive.

Question 4

Let $m \propto n, n, m \in z^{+}$if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

$12=1100_{2}, 18=10010_{2}$ so $12 \nless 18$
$21=10101_{2}$ so $5 \propto 21$
Prove that this is a partial order on Z^{+}.
Proof.
(1) We need to show that this relation is anti-symmetric and transitive.
(2) This relation is clearly reflexive.
(3) It is antisymmetric. If $n \neq m$ and $n \propto m$ then $m \not \propto n$

Question 4

Let $m \propto n, n, m \in z^{+}$if when there is a 1 in the binary representation of m there is also a 1 in the binary representation of n.

Example

$12=1100_{2}, 18=10010_{2}$ so $12 \nless 18$
$21=10101_{2}$ so $5 \propto 21$
Prove that this is a partial order on Z^{+}.
Proof.
(1) We need to show that this relation is anti-symmetric and transitive.
(2) This relation is clearly reflexive.
(3) It is antisymmetric. If $n \neq m$ and $n \propto m$ then $m \not \propto n$
4. It is transitive! Follows directly from the definition.

Question 5

Construct an example of a relation on Z^{+}which is reflexive, symmetric but not transitive.

Question 5

Construct an example of a relation on Z^{+}which is reflexive, symmetric but not transitive.

To see the answer hit PgDn

Question 5

Construct an example of a relation on Z^{+}which is reflexive, symmetric but not transitive.

To see the answer hit PgDn

Question 5

Construct an example of a relation on Z^{+}which is reflexive, symmetric but not transitive.

To see the answer hit PgDn
Let $n \propto m$ if $\frac{a^{3}+b^{3}}{a b} \in Z^{+}$.
Reflexive: $m \propto m$ becuase $\frac{a^{3}+a^{3}}{a^{2}}=2 a \in Z^{+}$
Symmetric: $m \propto n \rightarrow \frac{m^{3}+n^{3}}{n m} \in Z^{+} \rightarrow n \propto m$
Transitive: This relation is not transitive. $2 \propto 4 \wedge 4 \propto 8$
but $2 \not \propto 8$ becuase $\frac{2^{3}+8^{3}}{16}=32 \frac{1}{2} \notin Z^{+}$.
(1) Find the transitive closure of the relation:
$\{((b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on the set $\{a, b, c, d, e\}$.
(1) Find the transitive closure of the relation:
$\{((b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on the set $\{a, b, c, d, e\}$.
(2) Is the transitive closure symmetric?
(1) Find the transitive closure of the relation:
$\{((b, c),(b, e),(c, e),(d, a),(e, b),(e, c)\}$ on the set $\{a, b, c, d, e\}$.
(2) Is the transitive closure symmetric?
(3) Is the transitive closure reflexive?

