Discrete Mathematics and its Applications

Ngày 8 tháng 9 năm 2012

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

2

イロト イヨト イヨト イヨト

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

R₃ = {(5,5), (2,3), (3,2), (1,4), (4,5)} is a relation between the sets A = {1,2,4,3,5} and B = {5,4,2,3}.

3

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m ∈ N\}$ is a relation on *N*.

3

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **3** $\mathbf{R}^2 = \{\{(x, y) \mid x, y \in \mathbf{R}\} \text{ is a relation on } R.$

3

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$
- **(a)** $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on *Z*.

-

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m ∈ N\}$ is a relation on N.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$
- $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on *Z*.

3

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\} \text{ is a relation on } \mathbf{R}.$
- $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on *Z*.
- Solution
 Solution</
- $\mathbb{R}_7 = \{(A, B) \mid A = TBT^{-1}, A, B, T \text{ square matrices of order } n\}.$

- 31

 $\mathbb{R}_2 \subset A \times A$ is a relation on A.

Example

- $\mathbb{R}_3 = \{(5,5), (2,3), (3,2), (1,4), (4,5)\}$ is a relation between the sets $A = \{1, 2, 4, 3, 5\}$ and $B = \{5, 4, 2, 3\}$.
- ② $ℝ_4 = \{(n, m) | n < m, n, m \in N\}$ is a relation on *N*.
- **◎** $\mathbf{R}^2 = \{\{(x, y) | x, y \in \mathbf{R}\}$ is a relation on *R*.
- $\mathbb{R}_5 = \{(n, m) \mid n m \text{ mod } 19 = 0\}$ is a relation on *Z*.
- [●] $\mathbb{R}_6 = \{((n, m), (j, k)) | \{m, m.j, k\} \subset Z \text{ and } nk = mj\} \text{ is a relation on } Z$
- $\mathbb{R}_7 = \{(A, B) \mid A = TBT^{-1}, A, B, T \text{ square matrices of order } n\}.$
- 2 Let G be a group and H a subgroup of G. $\mathbb{R}_8 = \{(r, s) \mid r \cdot s^{-1} \in H\}$ is a relation on G.

イロト 不得 トイヨト イヨト 二日

Definition

Definition

• A relation \mathbb{R} on a set A:

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.
 - *Is* symmetric *if* $(x, y) \in \mathbb{R} \longrightarrow (y, x) \in \mathbb{R}$.

< ロ > < 同 > < 回 > < 回 >

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.
 - *Is* symmetric *if* $(x, y) \in \mathbb{R} \longrightarrow (y, x) \in \mathbb{R}$.
 - *Is* transitive *if* (x, y) *and* $(y, z) \in \mathbb{R}$ *then* $(x, z) \in \mathbb{R}$ *.*

< ロ > < 同 > < 回 > < 回 > < 回 >

Definition

- A relation \mathbb{R} on a set A:
 - *Is* reflexive *if* $\forall a \in A \ (a, a) \in \mathbb{R}$.
 - *Is* symmetric *if* $(x, y) \in \mathbb{R} \longrightarrow (y, x) \in \mathbb{R}$.
 - *Is* transitive *if* (x, y) *and* $(y, z) \in \mathbb{R}$ *then* $(x, z) \in \mathbb{R}$ *.*

Question

Which relation from our examples is reflexive, symmetric, transitive?

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

< ロ > < 同 > < 回 > < 回 >

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

< ロ > < 同 > < 回 > < 回 >

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

• If
$$x, y \in A_i \rightarrow (x, y) \in \mathbb{R}$$
. If $x \in A_i, y \in A_j \ i \neq j$ then $(x, y) \notin \mathbb{R}$.

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

1 If
$$x, y \in A_i \rightarrow (x, y) \in \mathbb{R}$$
. If $x \in A_i, y \in A_j \ i \neq j$ then $(x, y) \notin \mathbb{R}$.

 $a_i \cap A_j = \emptyset \text{ if } i \neq j.$

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

1 If
$$x, y \in A_i \rightarrow (x, y) \in \mathbb{R}$$
. If $x \in A_i, y \in A_j \ i \neq j$ then $(x, y) \notin \mathbb{R}$.

 $a_i \cap A_j = \emptyset \text{ if } i \neq j.$

3

Definition

A relation \mathbb{R} on a set A is an **equivalence** relation if it is **reflexive**, **symmetric**, **transitive**.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then $A = A_1 \cup A_2 \cup \ldots$ where:

• If
$$x, y \in A_i \rightarrow (x, y) \in \mathbb{R}$$
. If $x \in A_i, y \in A_j \ i \neq j$ then $(x, y) \notin \mathbb{R}$.

2
$$A_i \cap A_j = \emptyset$$
 if $i \neq j$.

We say that the relation \mathbb{R} partitions A into equivalence classes.

3

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_1 between A and B and a second binary relation \mathbb{R}_2 between B and C we can define a new relation \mathbb{R}_3 between A and C, the **composition** of \mathbb{R}_1 and \mathbb{R}_2 as follows:

$$\mathbb{R}_1 \circ \mathbb{R}_2 = \{(a, c) \mid \exists b \in B \text{ such that } (a, b) \in \mathbb{R}_1 \text{ and } (b, c) \in \mathbb{R}_2\}$$

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_1 between A and B and a second binary relation \mathbb{R}_2 between B and C we can define a new relation \mathbb{R}_3 between A and C, the **composition** of \mathbb{R}_1 and \mathbb{R}_2 as follows:

$$\mathbb{R}_1 \circ \mathbb{R}_2 = \{(a, c) \mid \exists b \in B \text{ such that } (a, b) \in \mathbb{R}_1 \text{ and } (b, c) \in \mathbb{R}_2\}$$

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_1 between A and B and a second binary relation \mathbb{R}_2 between B and C we can define a new relation \mathbb{R}_3 between A and C, the **composition** of \mathbb{R}_1 and \mathbb{R}_2 as follows:

$$\mathbb{R}_1 \circ \mathbb{R}_2 = \{(a, c) \mid \exists b \in B \text{ such that } (a, b) \in \mathbb{R}_1 \text{ and } (b, c) \in \mathbb{R}_2\}$$

Example: Let $\mathbb{R} = \{(a, b) \mid b \text{ is the parent of } a\}$. This is a relation on the set of all people in the world.

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_1 between A and B and a second binary relation \mathbb{R}_2 between B and C we can define a new relation \mathbb{R}_3 between A and C, the **composition** of \mathbb{R}_1 and \mathbb{R}_2 as follows:

$$\mathbb{R}_1 \circ \mathbb{R}_2 = \{(a, c) \mid \exists b \in B \text{ such that } (a, b) \in \mathbb{R}_1 \text{ and } (b, c) \in \mathbb{R}_2\}$$

Example: Let $\mathbb{R} = \{(a, b) \mid b \text{ is the parent of } a\}$. This is a relation on the set of all people in the world.

What is the relation $\mathbb{R} \circ \mathbb{R}$? What is $\mathbb{R} \circ \mathbb{R} \circ \mathbb{R}$?

Discrete Mathematicsand its Applications

Ngày 8 tháng 9 năm 2012 5 / 1

2

ヘロト 人間 とくほとくほど

If \mathbb{R}_1 and \mathbb{R}_2 are reflexive relations on a set A are the relations $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also reflexive?

- If \mathbb{R}_1 and \mathbb{R}_2 are reflexive relations on a set A are the relations $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also reflexive?
- 2 If both are symmetric are $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also symmetric?

- If \mathbb{R}_1 and \mathbb{R}_2 are reflexive relations on a set A are the relations $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also reflexive?
- 2 If both are symmetric are $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also symmetric?
- How about transitive?

- If \mathbb{R}_1 and \mathbb{R}_2 are reflexive relations on a set A are the relations $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also reflexive?
- 2 If both are symmetric are $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also symmetric?
- How about transitive?

- If \mathbb{R}_1 and \mathbb{R}_2 are reflexive relations on a set A are the relations $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also reflexive?
- 2 If both are symmetric are $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also symmetric?
- How about transitive?

Given a realtion \mathbb{R} on a set A. There is a "smallest" transitive relation \mathbb{R}_1 that contains \mathbb{R} . What do we mean by smallest?

< ロ > < 同 > < 回 > < 回 >

- If \mathbb{R}_1 and \mathbb{R}_2 are reflexive relations on a set A are the relations $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also reflexive?
- 2 If both are symmetric are $\mathbb{R}_1 \cup \mathbb{R}_2$ or $\mathbb{R}_1 \cap \mathbb{R}_2$ also symmetric?
- How about transitive?

Given a realtion \mathbb{R} on a set A. There is a "smallest" transitive relation \mathbb{R}_1 that contains \mathbb{R} . What do we mean by smallest?

Can there be more than one "smallest"?

< ロ > < 同 > < 回 > < 回 >

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_1 such that:

Theorem

For any relation $\mathbb R$ on a set A there is a relation $\mathbb R_1$ such that:

Theorem

For any relation $\mathbb R$ on a set A there is a relation $\mathbb R_1$ such that:

- **2** \mathbb{R}_1 is transitive.

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_1 such that:

- $\bigcirc \mathbb{R} \subset \mathbb{R}_1$
- 2 \mathbb{R}_1 is transitive.

③ Any other transitive relation $\mathbb{R} \subset \mathbb{R}_3$ also contains the relation \mathbb{R}_1 .

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_1 such that:

- $\bigcirc \mathbb{R} \subset \mathbb{R}_1$
- 2 \mathbb{R}_1 is transitive.

③ Any other transitive relation $\mathbb{R} \subset \mathbb{R}_3$ also contains the relation \mathbb{R}_1 .

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_1 such that:

- $\bigcirc \mathbb{R} \subset \mathbb{R}_1$
- 2 \mathbb{R}_1 is transitive.

③ Any other transitive relation $\mathbb{R} \subset \mathbb{R}_3$ also contains the relation \mathbb{R}_1 .

\mathbb{R}_1 is called the **transitive closure** of \mathbb{R}

• • • • • • • • • • • • •

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_1 such that:

- 2 \mathbb{R}_1 is transitive.

③ Any other transitive relation $\mathbb{R} \subset \mathbb{R}_3$ also contains the relation \mathbb{R}_1 .

\mathbb{R}_1 is called the **transitive closure** of \mathbb{R}

Chứng minh.

The intersection of all transitive relations that contain \mathbb{R} is transitive, and the only smallest transitive relation that contains \mathbb{R} .

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_1 such that:

- 2 \mathbb{R}_1 is transitive.

③ Any other transitive relation $\mathbb{R} \subset \mathbb{R}_3$ also contains the relation \mathbb{R}_1 .

\mathbb{R}_1 is called the **transitive closure** of \mathbb{R}

Chứng minh.

The intersection of all transitive relations that contain \mathbb{R} is transitive, and the only smallest transitive relation that contains \mathbb{R} .

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_1 such that:

- $\bigcirc \mathbb{R} \subset \mathbb{R}_1$
- 2 \mathbb{R}_1 is transitive.

③ Any other transitive relation $\mathbb{R} \subset \mathbb{R}_3$ also contains the relation \mathbb{R}_1 .

\mathbb{R}_1 is called the **transitive closure** of \mathbb{R}

Chứng minh.

The intersection of all transitive relations that contain \mathbb{R} is transitive, and the only smallest transitive relation that contains \mathbb{R} .

There are similar closures for reflexivity and symmetry.

• The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.

э

イロト イポト イヨト イヨト

- The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.
- 2 Its reflexive closure is the relation $\{(a, b) \mid a \le b, a, b \in Z\}$

3

- The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.
- 2 Its reflexive closure is the relation $\{(a, b) \mid a \le b, a, b \in Z\}$
- **③** What is the symmetric closure of \mathbb{R} ?

3

- The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.
- 2 Its reflexive closure is the relation $\{(a, b) \mid a \le b, a, b \in Z\}$
- **③** What is the symmetric closure of \mathbb{R} ?
- If the symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.

3

- The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.
- 2 Its reflexive closure is the relation $\{(a, b) \mid a \le b, a, b \in Z\}$
- What is the symmetric closure of \mathbb{R} ?
- **④** The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
- The relation {(p, q) | p, q are friends on facebook } is a relation among people.

3

- The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.
- 2 Its reflexive closure is the relation $\{(a, b) \mid a \le b, a, b \in Z\}$
- O What is the symmetric closure of ℝ?
- **④** The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
- The relation {(p, q) | p, q are friends on facebook } is a relation among people.
- What is its transitive closure?

3

- The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.
- 2 Its reflexive closure is the relation $\{(a, b) \mid a \le b, a, b \in Z\}$
- O What is the symmetric closure of ℝ?
- **④** The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
- So The relation $\{(p, q) | p, q \text{ are friends on facebook }\}$ is a relation among people.
- What is its transitive closure?
- Probably everyone who has a facebook account.

3

- The relation $\mathbb{R} = \{(a, b) \mid a < b, a, b \in Z\}$ is not reflexive.
- 2 Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$
- **③** What is the symmetric closure of \mathbb{R} ?
- **④** The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
- The relation $\{(p, q) \mid p, q \text{ are friends on facebook }\}$ is a relation among people.
- What is its transitive closure?
- Probably everyone who has a facebook account.

Remark

The transitive closure is an operation very frequently executed in many applications. Facebook is one of them. Warshall's algorithm effciently produces the transitive closure of a relation.

イロト イポト イヨト イヨト

Let \mathbb{R} be a relation on the finite set $A = \{a_1, a_2, \dots, a_n\}$. A list $a_{i_1}, a_{i_2}, \dots a_{i_k}$ is a **path** if $(a_{i_j}, a_{i_{j+1}}) \in \mathbb{R}$.

1 Initialize: $\mathbb{R}_1 = \mathbb{R}$

Let \mathbb{R} be a relation on the finite set $A = \{a_1, a_2, \dots, a_n\}$. A list $a_{i_1}, a_{i_2}, \dots a_{i_k}$ is a **path** if $(a_{i_j}, a_{i_{j+1}}) \in \mathbb{R}$.

Initialize: $\mathbb{R}_1 = \mathbb{R}$

1: \forall pairs (i, j) add (a_i, a_j) to \mathbb{R}_1 if $(a_i, a_1) \land (a_1, a_j) \in \mathbb{R}_1$.

Let \mathbb{R} be a relation on the finite set $A = \{a_1, a_2, \dots, a_n\}$. A list $a_{i_1}, a_{i_2}, \dots a_{i_k}$ is a **path** if $(a_{i_j}, a_{i_{j+1}}) \in \mathbb{R}$.

Initialize: $\mathbb{R}_1 = \mathbb{R}$

- 1: \forall pairs (i, j) add (a_i, a_j) to \mathbb{R}_1 if $(a_i, a_1) \land (a_1, a_j) \in \mathbb{R}_1$.
- 2: \forall pairs (i.j) add (a_i, a_j) to \mathbb{R}_1 if there is a path a_i, a_1, a_j or a path a_i, a_2, a_j or $a_i, x, y, a_j, \{x, y\} = \{a_1, a_2\}$ in \mathbb{R}_1 .

Let \mathbb{R} be a relation on the finite set $A = \{a_1, a_2, \dots, a_n\}$. A list $a_{i_1}, a_{i_2}, \dots a_{i_k}$ is a **path** if $(a_{i_j}, a_{i_{j+1}}) \in \mathbb{R}$.

Initialize: $\mathbb{R}_1 = \mathbb{R}$

- 1: \forall pairs (i, j) add (a_i, a_j) to \mathbb{R}_1 if $(a_i, a_1) \land (a_1, a_j) \in \mathbb{R}_1$.
- 2: \forall pairs (i.j) add (a_i, a_j) to \mathbb{R}_1 if there is a path a_i, a_1, a_j or a path a_i, a_2, a_j or $a_i, x, y, a_j, \{x, y\} = \{a_1, a_2\}$ in \mathbb{R}_1 .
- t: \forall pairs (i, j) add (a_i, a_j) to \mathbb{R}_1 if there is a path $a_i, x_1, \dots, x_m, a_j$ in \mathbb{R}_1 .

Let \mathbb{R} be a relation on the finite set $A = \{a_1, a_2, \dots, a_n\}$. A list $a_{i_1}, a_{i_2}, \dots a_{i_k}$ is a **path** if $(a_{i_j}, a_{i_{j+1}}) \in \mathbb{R}$.

Initialize: $\mathbb{R}_1 = \mathbb{R}$

- 1: \forall pairs (i, j) add (a_i, a_j) to \mathbb{R}_1 if $(a_i, a_1) \land (a_1, a_j) \in \mathbb{R}_1$.
- 2: \forall pairs (i.j) add (a_i, a_j) to \mathbb{R}_1 if there is a path a_i, a_1, a_j or a path a_i, a_2, a_j or $a_i, x, y, a_j, \{x, y\} = \{a_1, a_2\}$ in \mathbb{R}_1 .
- t: \forall pairs (i, j) add (a_i, a_j) to \mathbb{R}_1 if there is a path $a_i, x_1, \dots, x_m, a_j$ in \mathbb{R}_1 .

Example

Let us find the transitive closure of the relation: $\{(1,2), (2,3), (3,4), (2,1), (1,4)\}$

-