Discrete Mathematics and its Applications

Ngày 8 tháng 9 năm 2012

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A. Example

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.
(5) $\mathbb{R}_{6}=\{((n, m),(j, k)) \mid\{m, m . j, k\} \subset Z$ and $n k=m j\}$ is a relation on Z

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.
(5) $\mathbb{R}_{6}=\{((n, m),(j, k)) \mid\{m, m . j, k\} \subset Z$ and $n k=m j\}$ is a relation on Z
(6) $\mathbb{R}_{7}=\left\{(A, B) \mid A=T B T^{-1}, A, B, T\right.$ square matrices of order $\left.n\right\}$.

Relations

$\mathbb{R}_{2} \subset A \times A$ is a relation on A.

Example

(1) $\mathbb{R}_{3}=\{(5,5),(2,3),(3,2),(1,4),(4,5)\}$ is a relation between the sets $A=\{1,2,4,3,5\}$ and $B=\{5,4,2,3\}$.
(2) $\mathbb{R}_{4}=\{(n, m) \mid n<m, n, m \in N\}$ is a relation on N.
(3) $\mathbf{R}^{2}=\{\{(x, y) \mid x, y \in \mathbf{R}\}$ is a relation on R.
(4) $\mathbb{R}_{5}=\{(n, m) \mid n-m \bmod 19=0\}$ is a relation on Z.
(5) $\mathbb{R}_{6}=\{((n, m),(j, k)) \mid\{m, m . j, k\} \subset Z$ and $n k=m j\}$ is a relation on Z
(6) $\mathbb{R}_{7}=\left\{(A, B) \mid A=T B T^{-1}, A, B, T\right.$ square matrices of order $\left.n\right\}$.
(7) Let G be a group and H a subgroup of G.
$\mathbb{R}_{8}=\left\{(r, s) \mid r \cdot s^{-1} \in H\right\}$ is a relation on G.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.
- Is symmetric if $(x, y) \in \mathbb{R} \longrightarrow(y, x) \in \mathbb{R}$.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition
(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.
- Is symmetric if $(x, y) \in \mathbb{R} \longrightarrow(y, x) \in \mathbb{R}$.
- Is transitive if (x, y) and $(y, z) \in \mathbb{R}$ then $(x, z) \in \mathbb{R}$.

Classification of relations

In this section we shall discuss only relations on a single set. Except for \mathbb{R}_{3} all examples are such relations.

Definition

(1) A relation \mathbb{R} on a set A :

- Is reflexive if $\forall a \in A(a, a) \in \mathbb{R}$.
- Is symmetric if $(x, y) \in \mathbb{R} \longrightarrow(y, x) \in \mathbb{R}$.
- Is transitive if (x, y) and $(y, z) \in \mathbb{R}$ then $(x, z) \in \mathbb{R}$.

Question

Which relation from our examples is reflexive, symmetric, transitive?

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Equivalence

Definition
A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem
If A is a set and \mathbb{R} is an equivalence relation on A then $A=A_{1} \cup A_{2} \cup \ldots$ where:

Equivalence

Definition
A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.
(2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.
(2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

Equivalence

Definition

A relation \mathbb{R} on a set A is an equivalence relation if it is reflexive, symmetric, transitive.

Question

Which relation from our examples is an equivalence relation?

Theorem

If A is a set and \mathbb{R} is an equivalence relation on A then
$A=A_{1} \cup A_{2} \cup \ldots$ where:
(1) If $x, y \in A_{i} \rightarrow(x, y) \in \mathbb{R}$. If $x \in A_{i}, y \in A_{j} i \neq j$ then $(x, y) \notin \mathbb{R}$.
(2) $A_{i} \cap A_{j}=\emptyset$ if $i \neq j$.

We say that the relation \mathbb{R} partitions A into equivalence classes.

Relations

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_{1} between A and B and a second binary relation \mathbb{R}_{2} between B and C we can define a new relation \mathbb{R}_{3} between A and C, the composition of \mathbb{R}_{1} and \mathbb{R}_{2} as follows:

$$
\mathbb{R}_{1} \circ \mathbb{R}_{2}=\left\{(a, c) \mid \exists b \in B \text { such that }(a, b) \in \mathbb{R}_{1} \text { and }(b, c) \in \mathbb{R}_{2}\right\}
$$

Relations

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_{1} between A and B and a second binary relation \mathbb{R}_{2} between B and C we can define a new relation \mathbb{R}_{3} between A and C, the composition of \mathbb{R}_{1} and \mathbb{R}_{2} as follows:

$$
\mathbb{R}_{1} \circ \mathbb{R}_{2}=\left\{(a, c) \mid \exists b \in B \text { such that }(a, b) \in \mathbb{R}_{1} \text { and }(b, c) \in \mathbb{R}_{2}\right\}
$$

Relations

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_{1} between A and B and a second binary relation \mathbb{R}_{2} between B and C we can define a new relation \mathbb{R}_{3} between A and C, the composition of \mathbb{R}_{1} and \mathbb{R}_{2} as follows:

$$
\mathbb{R}_{1} \circ \mathbb{R}_{2}=\left\{(a, c) \mid \exists b \in B \text { such that }(a, b) \in \mathbb{R}_{1} \text { and }(b, c) \in \mathbb{R}_{2}\right\}
$$

Example: Let $\mathbb{R}=\{(a, b) \mid b$ is the parent of $a\}$. This is a relation on the set of all people in the world.

Relations

Recall: relations are sets. So we can create new relations from given ones by using set operations. We can take unions, intersections, other set operations and create new relations.

Example (Compositions)

Given a binary relation \mathbb{R}_{1} between A and B and a second binary relation \mathbb{R}_{2} between B and C we can define a new relation \mathbb{R}_{3} between A and C, the composition of \mathbb{R}_{1} and \mathbb{R}_{2} as follows:

$$
\mathbb{R}_{1} \circ \mathbb{R}_{2}=\left\{(a, c) \mid \exists b \in B \text { such that }(a, b) \in \mathbb{R}_{1} \text { and }(b, c) \in \mathbb{R}_{2}\right\}
$$

Example: Let $\mathbb{R}=\{(a, b) \mid b$ is the parent of $a\}$. This is a relation on the set of all people in the world.
What is the relation $\mathbb{R} \circ \mathbb{R}$? What is $\mathbb{R} \circ \mathbb{R} \circ \mathbb{R}$?

Closures

Question

Closures

Question

(1) If \mathbb{R}_{1} and \mathbb{R}_{2} are reflexive relations on a set A are the relations $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also reflexive?

Closures

Question

(1) If \mathbb{R}_{1} and \mathbb{R}_{2} are reflexive relations on a set A are the relations $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also reflexive?
(2) If both are symmetric are $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also symmetric?

Closures

Question

(1) If \mathbb{R}_{1} and \mathbb{R}_{2} are reflexive relations on a set A are the relations $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also reflexive?
(2) If both are symmetric are $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also symmetric?
(0) How about transitive?

Closures

Question

(1) If \mathbb{R}_{1} and \mathbb{R}_{2} are reflexive relations on a set A are the relations $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also reflexive?
(2) If both are symmetric are $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also symmetric?
(0) How about transitive?

Closures

Question

(1) If \mathbb{R}_{1} and \mathbb{R}_{2} are reflexive relations on a set A are the relations $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also reflexive?
(2) If both are symmetric are $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also symmetric?
(0) How about transitive?

Given a realtion \mathbb{R} on a set A. There is a "smallest" transitive relation \mathbb{R}_{1} that contains \mathbb{R}. What do we mean by smallest?

Closures

Question

(1) If \mathbb{R}_{1} and \mathbb{R}_{2} are reflexive relations on a set A are the relations $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also reflexive?
(2) If both are symmetric are $\mathbb{R}_{1} \cup \mathbb{R}_{2}$ or $\mathbb{R}_{1} \cap \mathbb{R}_{2}$ also symmetric?
(3) How about transitive?

Given a realtion \mathbb{R} on a set A. There is a "smallest" transitive relation \mathbb{R}_{1} that contains \mathbb{R}. What do we mean by smallest?
Can there be more than one "smallest"?

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$
(2) \mathbb{R}_{1} is transitive.

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$
(2) \mathbb{R}_{1} is transitive.
(3) Any other transitive relation $\mathbb{R} \subset \mathbb{R}_{3}$ also contains the relation \mathbb{R}_{1}.

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$
(2) \mathbb{R}_{1} is transitive.
(3) Any other transitive relation $\mathbb{R} \subset \mathbb{R}_{3}$ also contains the relation \mathbb{R}_{1}.

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$
(2) \mathbb{R}_{1} is transitive.
(3) Any other transitive relation $\mathbb{R} \subset \mathbb{R}_{3}$ also contains the relation \mathbb{R}_{1}.

\mathbb{R}_{1} is called the transitive closure of \mathbb{R}

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$
(2) \mathbb{R}_{1} is transitive.
(3) Any other transitive relation $\mathbb{R} \subset \mathbb{R}_{3}$ also contains the relation \mathbb{R}_{1}.

\mathbb{R}_{1} is called the transitive closure of \mathbb{R}

Chứng minh.
The intersection of all transitive relations that contain \mathbb{R} is transitive, and the only smallest transitive relation that contains \mathbb{R}.

Closures

Theorem
For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$
(2) \mathbb{R}_{1} is transitive.
(3) Any other transitive relation $\mathbb{R} \subset \mathbb{R}_{3}$ also contains the relation \mathbb{R}_{1}.

\mathbb{R}_{1} is called the transitive closure of \mathbb{R}

Chứng minh.
The intersection of all transitive relations that contain \mathbb{R} is transitive, and the only smallest transitive relation that contains \mathbb{R}.

Closures

Theorem

For any relation \mathbb{R} on a set A there is a relation \mathbb{R}_{1} such that:
(1) $\mathbb{R} \subset \mathbb{R}_{1}$
(2) \mathbb{R}_{1} is transitive.
(3) Any other transitive relation $\mathbb{R} \subset \mathbb{R}_{3}$ also contains the relation \mathbb{R}_{1}.

\mathbb{R}_{1} is called the transitive closure of \mathbb{R}

Chứng minh.
The intersection of all transitive relations that contain \mathbb{R} is transitive, and the only smallest transitive relation that contains \mathbb{R}.

There are similar closures for reflexivity and symmetry.

Examples

(c) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.

Examples

(1) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.
(2) Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$

Examples

(1) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.
(2) Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$
(3) What is the symmetric closure of \mathbb{R} ?

Examples

(1) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.
(2) Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$
(3) What is the symmetric closure of \mathbb{R} ?
(4) The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.

Examples

(1) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.
(2) Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$
(3) What is the symmetric closure of \mathbb{R} ?
(4) The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
(5) The relation $\{(p, q) \mid p, q$ are friends on facebook $\}$ is a relation among people.

Examples

(1) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.
(2) Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$
(3) What is the symmetric closure of \mathbb{R} ?
(4) The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
(5) The relation $\{(p, q) \mid p, q$ are friends on facebook $\}$ is a relation among people.
(6) What is its transitive closure?

Examples

(1) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.
(2) Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$
(3) What is the symmetric closure of \mathbb{R} ?
(4) The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
(5) The relation $\{(p, q) \mid p, q$ are friends on facebook $\}$ is a relation among people.
(6) What is its transitive closure?
(7) Probably everyone who has a facebook account.

Examples

(1) The relation $\mathbb{R}=\{(a, b) \mid a<b, a, b \in Z\}$ is not reflexive.
(2) Its reflexive closure is the relation $\{(a, b) \mid a \leq b, a, b \in Z\}$
(3) What is the symmetric closure of \mathbb{R} ?
(9) The symmetric closure of \mathbb{R} is the relation $\{(a, b) \mid a \neq b\}$.
(0) The relation $\{(p, q) \mid p, q$ are friends on facebook $\}$ is a relation among people.
(What is its transitive closure?
((Probably everyone who has a facebook account.

Remark

The transitive closure is an operation very frequently executed in many applications. Facebook is one of them. Warshall's algorithm effciently produces the transitive closure of a relation.

Warshall's transitive closure algorithm

Let \mathbb{R} be a relation on the finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. A list $a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}$ is a path if $\left(a_{i j}, a_{i_{j+1}}\right) \in \mathbb{R}$.
(1) Initialize: $\mathbb{R}_{1}=\mathbb{R}$

Warshall's transitive closure algorithm

Let \mathbb{R} be a relation on the finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$. A list $a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}$ is a path if $\left(a_{i j}, a_{i_{j+1}}\right) \in \mathbb{R}$.
(1) Initialize: $\mathbb{R}_{1}=\mathbb{R}$

1: \forall pairs (i, j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if $\left(a_{i}, a_{1}\right) \wedge\left(a_{1}, a_{j}\right) \in \mathbb{R}_{1}$.

Warshall's transitive closure algorithm

Let \mathbb{R} be a relation on the finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
A list $a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}$ is a path if $\left(a_{i j}, a_{i_{j+1}}\right) \in \mathbb{R}$.
(1) Initialize: $\mathbb{R}_{1}=\mathbb{R}$

1: \forall pairs (i, j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if $\left(a_{i}, a_{1}\right) \wedge\left(a_{1}, a_{j}\right) \in \mathbb{R}_{1}$.
2: \forall pairs $(i . j)$ add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if there is a path a_{i}, a_{1}, a_{j} or a path a_{i}, a_{2}, a_{j} or $a_{i}, x, y, a_{j},\{x, y\}=\left\{a_{1}, a_{2}\right\}$ in \mathbb{R}_{1}.

Warshall's transitive closure algorithm

Let \mathbb{R} be a relation on the finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
A list $a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}$ is a path if $\left(a_{i j}, a_{i_{j+1}}\right) \in \mathbb{R}$.
(1) Initialize: $\mathbb{R}_{1}=\mathbb{R}$

1: \forall pairs (i, j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if $\left(a_{i}, a_{1}\right) \wedge\left(a_{1}, a_{j}\right) \in \mathbb{R}_{1}$.
2: \forall pairs (i.j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if there is a path
a_{i}, a_{1}, a_{j} or a path a_{i}, a_{2}, a_{j} or $a_{i}, x, y, a_{j},\{x, y\}=\left\{a_{1}, a_{2}\right\}$ in \mathbb{R}_{1}.
$\mathrm{t}: \forall$ pairs (i, j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if there is a path $a_{i}, x_{1}, \ldots, x_{m}, a_{j}$ in \mathbb{R}_{1}.

Warshall's transitive closure algorithm

Let \mathbb{R} be a relation on the finite set $A=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$.
A list $a_{i_{1}}, a_{i_{2}}, \ldots a_{i_{k}}$ is a path if $\left(a_{i j}, a_{i_{j+1}}\right) \in \mathbb{R}$.
(1) Initialize: $\mathbb{R}_{1}=\mathbb{R}$

1: \forall pairs (i, j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if $\left(a_{i}, a_{1}\right) \wedge\left(a_{1}, a_{j}\right) \in \mathbb{R}_{1}$.
2: \forall pairs (i.j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if there is a path a_{i}, a_{1}, a_{j} or a path a_{i}, a_{2}, a_{j} or $a_{i}, x, y, a_{j},\{x, y\}=\left\{a_{1}, a_{2}\right\}$ in \mathbb{R}_{1}.
$\mathrm{t}: \forall$ pairs (i, j) add $\left(a_{i}, a_{j}\right)$ to \mathbb{R}_{1} if there is a path $a_{i}, x_{1}, \ldots, x_{m}, a_{j}$ in \mathbb{R}_{1}.

Example

Let us find the transitive closure of the relation:
$\{(1,2),(2,3),(3,4),(2,1),(1,4)\}$

