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Over the centuries, many papers have been written about relations among differ-
ent parts of a triangle, by well-known mathematicians as well as others. The main
aim of this note is to show how asking the right questions can lead to new facts and
to far-reaching generalizations that retain an elementary nature and would have been
understandable to mathematicians of ages past.

Our starting point is one of the results of Euler’s paper [5], which shows, in the
notation ofFIGURE 1, that

QB1/A1B1 + QB2/A2B2 + QB3/A3B3 = 1, (∗)
whereQ is an arbitrary point in the plane of the arbitrary triangleA1A2A3 andBi

is the intersection point of the cevian lineQiQ with the side oppositeAi. Here and
throughout, the only restriction is that all the points are well-defined and all the lengths
appearing in the denominators are not zero. The lengths are understood as signed
lengths; since only ratios of collinear segments are considered, the positive direction
on the lines carrying the segments is irrelevant. Euler gives several proofs that use
various elementary geometric or trigonometric arguments. We shall provide a simple
proof, and show how this result can be generalized in a variety of ways: to analogs of
triangles in three and higher dimensions, to polygons with more than three sides and
their higher-dimensional analogs, and to other ratio-sums.

We shall first discuss the version of Euler’s result that holds ford-dimensional sim-
plices, that is, the simplest polytopes of dimensiond — the analogs of the triangles in
the plane and tetrahedra in 3-space. We shall tie this with a presentation of similar re-
sults for the five other ratio-sums that can be defined using cevians; so far, these seem
to have received scant attention. In contrast to Euler’s result, formulas with the five
other ratio-sums involve the dimensiond; in some cases, the formula takes the form
of an inequality, with the case of equality precisely identified. The generalizations of
these results to more general polygons, polyhedra, and polytopes (higher dimensional
relatives of polygons and polyhedra) will then be presented, followed by historical and
other comments.

Ratio-sums for simplices For d ≥ 2, let T d denote thed-dimensional simplex in
Euclideand-spaceEd, with verticesAi, 0 ≤ i ≤ d. ThusT d can be interpreted as
∗Professor Klamkin passed away in the summer of 2004. As a friend and a mathematician he will be sorely

missed by many of us. Professor Klamkin was still able to see the referees’ comments on our paper and approve
the proposed final version of it. A variety of unfortunate circumstances delayed the sending of that version to the
Editor. But this had the silver lining contained in part (vii) of the last section, added September 15, 2005. BG
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FIGURE 1: An example illustrating the notation used in Euler’s theorem and in Theo-
rem 1

the convex hull ofd + 1 points of the Euclideand-spaceEd that are not all contained
in a hyperplane of smaller dimension. A good model to illustrate the concept and the
following arguments is given by thed-simplex with vertices at the origin and at the
unit points of a standard basis ofEd. For notational convenience we shall occasionally
useAd+1 = A0.

We start by describing the setting of the results. LetQ be a pint ofEd, andFi the
facet (that is, the(d− 1)-dimensional face) ofT d that is oppositeAi. Let Bi be the
point of intersection of the line (thecevian) throughAi andQ with the hyperplaneHi

that containsFi. For the defintions, and some of the results, the pointQ need not be in
the interior ofT d; the only overall restriction onQ is that all pointsBi must be well
defined, and that the denominators in the various fractions be nonzero. This condition
will be assumed throughout, and will not be repeated in the reformulation of our re-
sults. We shall be interested in various ratios involving the lengthsai = ‖Ai −Q‖,
bi = ‖Q−Bi‖, qi = ‖Ai −Bi‖ of the segmentsAiQ, QBi, AiBi. As already men-
tioned, the lengths in question are to be taken as signed lengths; since we shall always
consider ratios of collinear segments, the scale of measurement and the direction cho-
sen as positive on each line are irrelevant. Ford = 2, one illustration of the possibilities
is indicated inFIGURE 1, and another inFIGURE 2.

To begin with, we are interested in the six ratio sums defined as follows:

ρ(b, q) = Σibi/qi, ρ(a, q)= Σiai/qi,

ρ(q, b) = Σiqi/bi, ρ(q, a)= Σiqi/ai,

ρ(a, b) = Σiai/bi, and ρ(b, a)= Σibi/ai,

where each sum is over alli, 0 ≤ i ≤ d. We shall prove the following results.

Theorem 1 With the above notation the following statements are valid for allQ:

(i) ρ(b, q) = 1.
(ii) ρ(a, q) = d.

(iii) If qi/bi > 0 for all i, thenρ(q, b) ≥ (d + 1)2; equality holds if and only ifQ is the
centroid ofT d.

(iv) If qi/ai > 0 for all i, thenρ(q, a) ≥ (d + 1)2; equality holds if and only ifQ is the
centroid ofT d.

(v) If qi/bi > 0 for all i, thenρ(a, b) ≥ d(d + 1); equality holds if and only ifQ is the
centroid ofT d.
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FIGURE 2: Another illustration of parts (i), (ii), (iv) and (vi) of Theorem 1. Parts (iii) and
(v) are not applicable to this example since q2/b2 < 0

(vi) If qi/ai > 0 for all i, thenρ(b, a) ≥ (d + 1)/d; equality holds if and only ifQ is
the centroid ofT d.

Before we turn to the proofs, we recall two very useful lemmas.
Let T d be ad-simplex with verticesAi, 0 ≤ i ≤ d, and letSd denote the simplex

with verticesQ,A1, A2, · · · , Ad. Then, denoting byV (T ) the signed volume of the
simplexT , we have:

Lemma 1 ‖Q−B0‖/‖A0 −B0‖ = b0/q0 = V (Sd)/V (T d).

This self-evident fact, which was called the “volume principle” in [11], has been
used without a special name by other authors (see, for example, [3, p. 131] ford = 3).
In cased = 2, it has been called the “area principle” in [10] and other publications,
and it has been used starting at least two centuries ago.

A second well-known tool is the elementary

Lemma 2 For all x > 0, x + 1/x ≥ 2, with equality if and only ifx = 1.

We shall frequently apply this lemma in the form1/x ≥ 2− x.

Proof of Theorem 1: We shall give here proofs for only the first three parts of Theorem
1, to serve as warm-up for the generalizations presented in Theorem 2.

The result of part (i) follows at once from Lemma 1, upon noticing that the signed
volumes of the simplices with common apexQ that are spanned by thed + 1 facets of
T d add up precisely to the signed volume ofT d. For part (ii) it is enough to note that

ρ(a, q) =
∑

i

ai/qi =
∑

i

(1− bi/qi)

= (d + 1)−
∑

i

bi/qi = d + 1− ρ(b, q) = d + 1− 1 = d.

For part (iii), using Lemma 2, we have

ρ(q, b)/(d + 1) =
∑

i

qi/ ((d + 1)bi) ≥ 2(d + 1)−
∑

i

((d + 1)bi) /qi

= 2(d + 1)− (d + 1)ρ(b, q) = d + 1,

which is equivalent to the inequality of (iii). Equality holds if and only if((d + 1)bi) /qi =
1 for everyi, which is a characterization ofQ as the centroid ofT d. ¥
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Further generalizations The role that the simplexT d plays in the above theorems
will become clearer as we move to generalize of Theorem 1. It is convenient to intro-
duce appropriate notation.

Let P denote a fixed polytope of dimensiond in Euclideand-spaceEd. It is sim-
plest to think ofP as a convex polytope, that is, as a generalization of convex polygons
in the plane or convex solids in 3-space, which one could call polytopes of dimen-
sion d = 2 or 3—the reader is welcome to use these to picture the generalizations.
However, the restriction to convex polytopes is in no way necessary. Ford = 2 and
d = 3, we can admit polygons and polyhedra in the generality described in [8] and
[9], that is, self-intersecting polygons, and self-intersecting polyhedra with possibly
self-intersecting faces. Ford ≥ 4 we admit the obvious generalizations of these kinds
of polygons and polyhedra. We shall use the termpolytopefor all dimensionsd ≥ 2.

We impose the following restrictions on the polytopes considered here: The poly-
topes must be orientable, and thed-polytopes and all their facets must have nonzero
content (volume in dimensiond or d− 1, respectively). The content of ad-polytope
P will be denoted byV (P ). Thed-pyramid determined by a(d− 1)-polytopeF and
pointX will be denotedF (X).

Polytopes satisfying these conditions shall be calledstar-like. The traditional
Kepler-Poinsot polyhedra—that is, the nonconvex analogs of the Platonic regular
solids—are star-like both in our sense and visually. So are many (but not all) of the
uniform polyhedra presented in [4], and beautifully illustrated by photos of models in
[19]. Many other examples appear in [8] and [9].

Let P be a star-liked-polytope. Thef facets ofP are labeledF1, F2, . . . , Ff in
an arbitrary order. LetAj , 1 ≤ j ≤ f , be a collection of points ofEd such that for
suitable pointsBj , with Bj in the hyperplane determined byFj , the lineLj = AjBj

is well defined, intersectsFj only in Bj , and all linesLj pass through a common point
Q.

In analogy to the notation for Theorem 1, we put:

ρ(b, q; W ) = Σjwjbj/qj, ρ(q, b; W ) = Σjqj/(wjbj),

ρ(a, q; W ) = Σjwjaj/qj, ρ(q, a; W )= Σjqj/(wjaj),

ρ(a, b; W ) = Σjwjaj/(wjbj), and ρ(b, a; W ) = Σjbj/(wjaj),

whereW = (w1, w2, . . . , wf ) is an orderedf -tuple of suitable weights specified be-
low; these weights depend onP and the pointsAj , but are independent ofQ. All
summations are forj = 1, 2, . . . , f . In all parts of Theorem 2 it is understood thatP
is a star-liked-polytope withf facets, the pointsQ andAj satisfy the above condition,
and the weightsW are given bywj = V (Fj(Aj)) /V (P ). We abbreviatew = Σjwj

andw∗ = Σj1/wj . FIGURE 3 illustrates the notation.

Theorem 2 With the above notation the following statements are valid:

(i) ρ(b, q; W ) = 1.
(ii) ρ(a, q; W ) = w − 1.
(iii) If qj/bj > 0 andwj > 0 for all j, thenρ(q, b; W ) ≥ w(2f − 1). Equality holds

if and only ifqj/(wjbj) = w for all j = 1, 2, . . . , f .
(iv) If qj/aj > 0 andwj > 0 for all j, thenρ(q, a; W ) ≥ f2/(w − 1), with equality

if and only ifqj/(wjaj) = f/(w − 1) for all j = 1, 2, . . . , f .
(v) If qj/bj > 0 and wj > 0 for all j, thenρ(a, b;W ) ≥ w(2f − w) − w∗, with

equality if and only ifqj/(wjbj) = w for all j = 1, 2, . . . , f .
(vi) If qj/aj > 0 and wj > 0 for all j, thenρ(b, a; W ) ≥ f2/(w − 1) − w∗, with

equality if and only ifqj/(wjaj) = f/(w − 1) for all j = 1, 2, . . . f .
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FIGURE 3: An example of the situation covered by Theorem 2. As is easily verified, in
this example the weights are given by W = (31/67, 37/67, 36/67, 30/67), hence w = 2

Proof of Theorem 2: For part (i), we note that an easy generalization of what we called
the “volume principle” shows thatbj/qj = V (Fj(Q)) /V (Fj(Aj)). Hence we have:
ρ(b, q; W ) = Σjwjbj/qj = ΣjwjV (Fj(Q)) /V (Fj(Aj)) = ΣjV (Fj(Q)) /V (P ) =
1, since the sum of the volumes of the pyramids with apexQ equals the volume ofP .

For part (ii), in analogy to the above and using Theorem 1(i), we have

ρ(A, q; W ) =
∑

j

wjaj/qj =
∑

j

wj(1− bj/qj)

=
∑

j

wj −
∑

j

wjV (Fj(Q)) /V (Fj(Aj)) = (
∑

j

wj)− 1 = w − 1.

For part (iii), in analogy to the proof of Theorem 1(iii), we have

ρ(q, b; W )/w =
∑

j

qj/(wwjbj) ≥
∑

j

(2− wwjbj/qj) = 2f − w.

The equality criterion follows from Lemma 2.
For part (iv) we have

(w − 1)ρ(q, a; W )/f

=
∑

j

(w − 1)qZj/(fw − jaj) ≥
∑

j

(2− fwjaj/ ((w − 1)qj)) =

=
∑

j

2− (f
∑

j

wjaj/qj)/(w − 1) = 2f − f(w − 1)/(w − 1) = f,

which is equivalent to the claim. The equality condition is again a consequence of
Lemma 2.

For part (v), in analogy to the above, and using Lemma 2 and part (i) of the theorem,
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we have

ρ(a, b; W ) =
∑

j

aj/(wjbj) =
∑

j

qj/(wjbj)−
∑

j

1/wj

= w
∑

j

qj/(wwjbj)−
∑

j

1/wj

≥ w
∑

j

(2− wwjbj/qj)− w∗ = 2wf ≥ V w2

∑
j

wjbj/qj − w∗

= 2wf − w2 − w∗.

Equality holds if and only if it holds in part (iii) of the theorem.
For part (vi), in analogy to the above, and using part (iv) of the theorem:

ρ(b, a;W )

=
∑

j

bj/(wjaj) =
∑

j

qj/(wjaj)−
∑

j

1/wj

= (f/(w − 1))
∑

j

(w − 1)qj/(fwjaj)− w∗

≥ (f/(w − 1))

(∑
j

2−
∑

j

fwjaj/ ((w − 1)qj)

)
− w∗

= 2f2/(w − 1)− (
f2/(w − 1)2

)∑
j

wjaj/qj − w∗

= 2f2/(w − 1)− (
f2/(w − 1)2

)
(w − 1)− w∗ = f2/(w − 1)− w∗,

with equality if and only if equality holds in part (iv).
This completes the proof of all parts of Theorem 2. ¥

Historical and other comments.

(i) For d = 2, Theorem 1(i) contains Euler’s result. Euler’s theorem has been redis-
covered by several authors; first among them is Gergonne [6]. Very few of these
mention Euler—even the authoritative work of Zacharias [21] mentions only Ger-
gonne. Surprisingly, the detailed survey of pre-20th century geometry by Simon
[18] (which has references to well over 2000 authors!) does not mention the result
at all. Without any attribution, Euler’s result appears in [1, p. 162]. The extension
to higher dimensions is also not new. Ford = 3 the earliest mention we are aware
of is by Gergonne [6]. Parts (i) and (ii) of Theorems 1 appear in texts [2, page 115]
and [3, page 131]. For generald, our Theorem 1(i) appears in [13] and probably
in several other places; it was also mentioned in a letter from Prof. H. Gülicher in
1998.

(ii) We are not aware of any mention of parts (iii) to (vi) of Theorem 1 in the literature.
The fact that equality holds in these cases forQ at the centroid is obvious. In each of
them, the characterization ofQ as the centroid in case of equality is due to Klamkin
[14].
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(iii) It is easy to verify that the results of Theorem 2 reduce to those of Theorem 1 in
the special case thatP is thed-simplexT d and the pointsAi are the vertices ofT d.
However, even ifP is T d the results of Theorem 2 are more general since they do
not restrict the pointsAi to be vertices ofT d.

(iv) Parts (i) and (ii) of Theorems 1 and 2 are somewhat analogous to the classical
theorems of Ceva and Menelaus, and the new results on self-transversality (see
[11]). These earlier results deal with product of ratios, while here we are concerned
with sums of ratios. However, our other results seem not to have any multiplicative
analogs.

(v) The ratiosaj/bj for cevians of a triangle appear in Euler’s paper [5], in the follow-
ing result, formulated in the notation of Section 1:

A1Q/QB1 + A2Q/QB2 + A3Q/QB3 + 2
= (A1Q/QB1) · (A2Q/QB2) · (A2Q/QB2).

(∗∗)

This nonlinear relation seems to have been largely forgotten. it has been established
in a simple way and its validity extended in the recent paper [17]. An analog of
this result is due to Euler [5]; it deals with ratios of lengths of the segments into
which each side of a triangle is partitioned by parallels to the other sides. It was
independently found by G̈ulicher [12].

(vi) The idea to use weights attached to the ratios originated with Shephard [16]; he
kindly sent a preprint of this paper to one of us. For polygons in the plane Shephard
establishes in [16] a restricted version of part (i) of our Theorem 2. Weights were
also assigned to ratios in [7], for ratio-sums of a slightly different kind.

(vii) Part (iii) of Theorem 1, as well as some results found in the literature, can be gener-
alized so that, instead of cevians, we use arbitrary segments, which need not have a
common point. LetT d, Ai, Q, Fi, andHi have the same meaning as in the discus-
sion leading to Theorem 1. LetBi be an arbitrary point ofHi, and letCi denote the
point of Hi such that the segmentQCi is parallel to the segmentAiBi. FIGURE

4 illustrates a case withd = 2. Let qi andci denote the signed lengths of the seg-
mentsAiBi andQCi, let f andfi denote thed-dimensional volumes ofT d and of
the simplices with basisFi, and letu andv be nonnegative reals. Using the obvious
generalization of the volume principle we have

∑
i

qi/(uci + vqi) =
∑

i

1/ (u(ci/qi) + v) =
∑

i

1/ (u(fi/f) + v)

≥ (d + 1)2/
∑

i

(u(fi/f) + v)

= (d + 1)2/ (u + v(d + 1)) .

Here we used the fact that the arithmetic mean is greater than or equal to the har-
monic mean, and that

∑
i fi/f = 1. One could also add the less interesting gen-

eralization of part (i) of Theorem 1, namely
∑

i(uci + vqi)/qi = u + v(d + 1).
The special cased = 3, with Bi the foot of the altitude fromAi, andQ the incenter
appears in [20] and [15]. In the former,u = 3 andv = 1, so that the lower bound
is 16/7; Murray Klamkin was one of the solvers of [20]. In [15], v = 0 andu = 1,
hence the lower bound is 16.

Acknowledgment. The authors are indebted to the referees for suggestions that greatly improved the presenta-
tion of the present paper.
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FIGURE 4: An illustration of the content and notation of comment (vii)
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