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Over the centuries, many papers have been written about relations among differ-
ent parts of a triangle, by well-known mathematicians as well as others. The main
aim of this note is to show how asking the right questions can lead to new facts and
to far-reaching generalizations that retain an elementary nature and would have been
understandable to mathematicians of ages past.

Our starting point is one of the results of Euler’s pafgr yvhich shows, in the
notation ofFIGURE 1, that

QB1/A1B; + QBy/AyBy + QB3 /A3 By = 1, (%)

where() is an arbitrary point in the plane of the arbitrary triangleA, A; and B;
is the intersection point of the cevian lidg; ) with the side oppositel;. Here and
throughout, the only restriction is that all the points are well-defined and all the lengths
appearing in the denominators are not zero. The lengths are understood as signed
lengths; since only ratios of collinear segments are considered, the positive direction
on the lines carrying the segments is irrelevant. Euler gives several proofs that use
various elementary geometric or trigonometric arguments. We shall provide a simple
proof, and show how this result can be generalized in a variety of ways: to analogs of
triangles in three and higher dimensions, to polygons with more than three sides and
their higher-dimensional analogs, and to other ratio-sums.

We shall first discuss the version of Euler’s result that holdglfdimensional sim-
plices, that is, the simplest polytopes of dimensior- the analogs of the triangles in
the plane and tetrahedra in 3-space. We shall tie this with a presentation of similar re-
sults for the five other ratio-sums that can be defined using cevians; so far, these seem
to have received scant attention. In contrast to Euler’s result, formulas with the five
other ratio-sums involve the dimensidhin some cases, the formula takes the form
of an inequality, with the case of equality precisely identified. The generalizations of
these results to more general polygons, polyhedra, and polytopes (higher dimensional
relatives of polygons and polyhedra) will then be presented, followed by historical and
other comments.

Ratio-sums for simplices Ford > 2, let T¢ denote thei-dimensional simplex in
Euclideand-spaceE<, with verticesA;, 0 < i < d. ThusT? can be interpreted as

*Professor Klamkin passed away in the summer of 2004. As a friend and a mathematician he will be sorely
missed by many of us. Professor Klamkin was still able to see the referees’ comments on our paper and approve
the proposed final version of it. A variety of unfortunate circumstances delayed the sending of that version to the
Editor. But this had the silver lining contained in part (vii) of the last section, added September 15, 2005. BG
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FIGURE 1: An example illustrating the notation used in Euler’s theorem and in Theo-
rem1l

the convex hull ofl + 1 points of the Euclideari-spaceFE* that are not all contained
in a hyperplane of smaller dimension. A good model to illustrate the concept and the
following arguments is given by thé-simplex with vertices at the origin and at the
unit points of a standard basis Bf. For notational convenience we shall occasionally
useAy 1 = Ap.

We start by describing the setting of the results. Qebe a pint of£¢, and F; the
facet (that is, théd — 1)-dimensional face) of @ that is opposited;. Let B; be the
point of intersection of the line (theeviar) throughA, and( with the hyperplanéd;
that containd’;. For the defintions, and some of the results, the pQineed not be in
the interior of 7'¢; the only overall restriction o is that all pointsB; must be well
defined, and that the denominators in the various fractions be nonzero. This condition
will be assumed throughout, and will not be repeated in the reformulation of our re-
sults. We shall be interested in various ratios involving the lengths ||A; — Q||
b = ||Q — B;|l, ¢: = ||A; — B;|| of the segments!;Q, @B;, A, B;. As already men-
tioned, the lengths in question are to be taken as signed lengths; since we shall always
consider ratios of collinear segments, the scale of measurement and the direction cho-
sen as positive on each line are irrelevant.der 2, one illustration of the possibilities
is indicated inFIGURE 1, and another iffIGURE 2.

To begin with, we are interested in the six ratio sums defined as follows:

p(ba Q) = Ezbz/q“ p(a7 q): Ezaz/%)
p(q,b) = Xiq; /b, p(g, a)= %iqi/ai,
p(a7 b) = 27aZ/b17 and p(b7 a): Equ/CLL,

where each sum is over all0 < ¢ < d. We shall prove the following results.

Theorem 1 With the above notation the following statements are valid fo€Jall

(@) p(b,q) =1.
(i) pla,q) =d.
(iii) If ¢;/b; > 0 forall 4, thenp(q,b) > (d + 1)?; equality holds if and only i) is the
centroid of7™.
(iv) If ¢;/a; > Oforall 4, thenp(q, a) > (d + 1)?; equality holds if and only i) is the
centroid of 7.
(v) If g;/b; > Ofor all 7, thenp(a,b) > d(d + 1); equality holds if and only i€) is the
centroid of 7.
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FIGURE 2: Another illustration of parts (i), (i), (iv) an(?(vi) of Theorem 1. Parts (jii) and
(v) are not applicable to this example since gz /ba < 0

(vi) If ¢;/a; > 0 for all ¢, thenp(b, a) > (d + 1)/d; equality holds if and only if) is
the centroid off",

Before we turn to the proofs, we recall two very useful lemmas.

Let T be ad-simplex with vertices4,, 0 < i < d, and letS? denote the simplex
with verticesQ, A, Ay, - -+ , Ay. Then, denoting by (T") the signed volume of the
simplexT’, we have:

Lemmal ||Q — Byl|/|[Ao — Bol|| = bo/qo = V(S /V(T).

This self-evident fact, which was called the “volume principle” id]} has been
used without a special name by other authors (see, for exar8pfe,131] ford = 3).
In cased = 2, it has been called the “area principle” ib(] and other publications,
and it has been used starting at least two centuries ago.

A second well-known tool is the elementary

Lemma 2 Forall z > 0, xz + 1/x > 2, with equality if and only ift = 1.

We shall frequently apply this lemma in the fodiz > 2 — x.

Proof of Theorem 2We shall give here proofs for only the first three parts of Theorem
1, to serve as warm-up for the generalizations presented in Theorem 2.

The result of part (i) follows at once from Lemma 1, upon noticing that the signed
volumes of the simplices with common ap@xhat are spanned by tlak+ 1 facets of
T4 add up precisely to the signed volumeldt. For part (ii) it is enough to note that

q) = Zaz‘/% = Z(l —bi/q;)

=(d+1)=> b/ai=d+1-pbg =d+1-1=d.

For part (iii), using Lemma 2, we have

p(g,b)/(d+1) Zqz D> 2(d+1) =Y ((d+1)b;) /g,
=2(d+1)—(d+1)p(b,q) =d+1,
which is equivalent to the inequality of (iii). Equality holds if and only(fl + 1)b;) /¢; =
1 for everyi, which is a characterization @) as the centroid of . ]
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Further generalizations The role that the simple¥® plays in the above theorems
will become clearer as we move to generalize of Theorem 1. It is convenient to intro-
duce appropriate notation.

Let P denote a fixed polytope of dimensiahin Euclideand-spaceFE?. It is sim-
plest to think ofP as a convex polytope, that is, as a generalization of convex polygons
in the plane or convex solids in 3-space, which one could call polytopes of dimen-
siond = 2 or 3—the reader is welcome to use these to picture the generalizations.
However, the restriction to convex polytopes is in no way necessaryl FoR and
d = 3, we can admit polygons and polyhedra in the generality describe8] enfd
[9], that is, self-intersecting polygons, and self-intersecting polyhedra with possibly
self-intersecting faces. Far> 4 we admit the obvious generalizations of these kinds
of polygons and polyhedra. We shall use the tewtytopefor all dimensions] > 2.

We impose the following restrictions on the polytopes considered here: The poly-
topes must be orientable, and #igolytopes and all their facets must have nonzero
content (volume in dimensiod or d — 1, respectively). The content of&polytope
P will be denoted by (P). Thed-pyramid determined by & — 1)-polytopeF' and
point X' will be denotedF'(X).

Polytopes satisfying these conditions shall be cabtat-like The traditional
Kepler-Poinsot polyhedra—that is, the nonconvex analogs of the Platonic regular
solids—are star-like both in our sense and visually. So are many (but not all) of the
uniform polyhedra presented id][ and beautifully illustrated by photos of models in
[19]. Many other examples appear i8] and [9].

Let P be a star-liked-polytope. Thef facets of P are labeledfy, F, ..., Fy in
an arbitrary order. Letd;, 1 < j < f, be a collection of points of?? such that for
suitable points3;, with B; in the hyperplane determined iy, the lineL,; = A;B;
is well defined, intersectB; only in B;, and all linesL; pass through a common point

Q

In analogy to the notation for Theorem 1, we put:

p(b, ¢; W) = Z;w;b;/q5, p(q,b; W) = E;q;/(w;b;),

pla,q; W) = E;w;a;/q;, p(q,a; W)= E;q;/(w;a;),

pla,b; W) = Zjw;a;/(w;b;), and p(b, a; W) = ;b;/(w;a;),
whereW = (w;, ws, ..., wy) is an ordered-tuple of suitable weights specified be-
low; these weights depend df and the pointsA;, but are independent a@. All
summations are fof = 1,2, ..., f. In all parts of Theorem 2 it is understood that

is a star-liked-polytope withf facets, the point§) and A; satisfy the above condition,
and the weight$V are given byw; = V (F;(4;)) /V (P). We abbreviater = ¥ ,w;
andw* = X;1/w;. FIGURE 3 illustrates the notation.

Theorem 2 With the above notation the following statements are valid:
() p(b,g; W) =1.
(i) pla, ;W) =w—1.
(iii) If g;/b; > 0 andw; > 0 for all j, thenp(q,b; W) > w(2f — 1). Equality holds
if and only ifg; /(w;b;) = wforall j =1,2,..., f.
(iv) If ¢;/a; > 0 andw; > 0 for all 4, thenp(q, a; W) > f?/(w — 1), with equality
ifand only ifg; /(w;a;) = f/(w—1)forall j =1,2,..., f.
(v) If ¢;/b; > 0 andw; > 0 for all j, thenp(a,b; W) > w(2f — w) — w*, with
equality if and only ifg; /(w;b;) = wforall j =1,2,..., f.
(vi) If g;/a; > 0 andw; > 0 for all j, thenp(b,a; W) > f?/(w — 1) — w*, with
equality if and only ify; /(w;a;) = f/(w —1)forall j =1,2,... f.
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FIGURE 3: An example of the situation covered by Theorem 2. As is easily verified, in
this example the weights are given by W = (31/67,37/67,36/67,30/67), hence w = 2

Proof of Theorem 2For part (i), we note that an easy generalization of what we called
the “volume principle” shows thdt; /¢, = V (F;(Q)) /V (F;(A;)). Hence we have:
p(b, ;W) = E5w;b;/q; = Xjw;V (F3(Q)) [V (F3(4;)) = 5,V (F(Q)) /V(P) =
1, since the sum of the volumes of the pyramids with afexquals the volume aP.

For part (ii), in analogy to the above and using Theorem 1(i), we have

p(A ;W ijaj/q] ij —b;/q;)
= wy = D wV(F(Q)/V (F(4)) = O w) ~1=w-1.

For part (iii), in analogy to the proof of Theorem 1(iii), we have

p(q, b; W) /w = qu/(wwjbj) > 2(2 —ww;b;/q;) = 2f —w.

The equality criterion follows from Lemma 2.
For part (iv) we have

(w —1)plg,a; W)/ f
—Z —1)aZ;/(fw - ja;) >Z (2 — fwsa;/ (w —1)g;)) =

—Zz— waj a;/q;)/(w—1) = 2f — f(w—1)/(w —1) = f,

which is equivalent to the claim. The equality condition is again a consequence of
Lemma 2.
For part (v), in analogy to the above, and using Lemma 2 and part (i) of the theorem,
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we have

pla,b; W) = Zaj/(wjbj) = qu/(wjbj) - Z 1/w;

J

J

=w qu/(wwjbj) = 1w

> U)Z(Q — U)’U}jbj/q]') —w' = 2'lUf > VwZ ijbj/Qj —w"
j J

=2wf —wy —w".

Equality holds if and only if it holds in part (iii) of the theorem.

For part (vi), in analogy to the above, and using part (iv) of the theorem:

p(b,a; W)

J

= Z bj/(w;a;) = Z a5/ (wja;) — 3 1w,
= (f/(w = 1) Y (w = D/ (fuya,) v

> (f/(w=1)) (ZQ - wajaj/ ((w— 1)%‘)) —w"
=2f*/(w—1) = (f*/(w—1)?) ijaj/qy' —w’

=2f*/(w—=1) = (f*/(w=1)*) (w=1) —w" = f*/(w - 1) -,

with equality if and only if equality holds in part (iv).

This completes the proof of all parts of Theorem 2. |

Historical and other comments.

(i) Ford = 2, Theorem 1(i) contains Euler’s result. Euler's theorem has been redis-

(ii)

covered by several authors; first among them is Gergo6né/¢ry few of these
mention Euler—even the authoritative work of ZachariaH mmentions only Ger-
gonne. Surprisingly, the detailed survey of pre-20th century geometry by Simon
[18] (which has references to well over 2000 authors!) does not mention the result
at all. Without any attribution, Euler’s result appearsing. 162]. The extension

to higher dimensions is also not new. kbe= 3 the earliest mention we are aware

of is by Gergonnef]. Parts (i) and (ii) of Theorems 1 appear in teX2sgage 115]

and [3, page 131]. For generdl, our Theorem 1(i) appears id3] and probably

in several other places; it was also mentioned in a letter from Prof.iHcl&r in
1998.

We are not aware of any mention of parts (iii) to (vi) of Theorem 1 in the literature.
The fact that equality holds in these casedjat the centroid is obvious. In each of
them, the characterization f as the centroid in case of equality is due to Klamkin
[14].
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(i)

(iv)

v)

(vi)

(vii)

It is easy to verify that the results of Theorem 2 reduce to those of Theorem 1 in
the special case th#t is thed-simplexT'® and the pointsi; are the vertices df“.
However, even ifP is T the results of Theorem 2 are more general since they do
not restrict the points!; to be vertices off ™.

Parts (i) and (ii) of Theorems 1 and 2 are somewhat analogous to the classical
theorems of Ceva and Menelaus, and the new results on self-transversality (see
[11]). These earlier results deal with product of ratios, while here we are concerned
with sums of ratios. However, our other results seem not to have any multiplicative
analogs.

The ratiosa; /b; for cevians of a triangle appear in Euler’s pagslr in the follow-
ing result, formulated in the notation of Section 1:

A1Q/QB, + A,Q/Q By + A3Q/QBs + 2 (+%)
- (AlQ/QBl) : (A2Q/Q32) : (AQQ/QBQ)'

This nonlinear relation seems to have been largely forgotten. it has been established
in a simple way and its validity extended in the recent papd}. [An analog of

this result is due to Euled]; it deals with ratios of lengths of the segments into
which each side of a triangle is partitioned by parallels to the other sides. It was
independently found by @icher [12].

The idea to use weights attached to the ratios originated with Shept@rché
kindly sent a preprint of this paper to one of us. For polygons in the plane Shephard
establishes in][6] a restricted version of part (i) of our Theorem 2. Weights were
also assigned to ratios if]| for ratio-sums of a slightly different kind.

Part (i) of Theorem 1, as well as some results found in the literature, can be gener-
alized so that, instead of cevians, we use arbitrary segments, which need not have a
common point. Lefl¢, A;, Q, F;, andH; have the same meaning as in the discus-
sion leading to Theorem 1. Lét; be an arbitrary point off;, and letC; denote the

point of H; such that the segme)C; is parallel to the segmem; B;. FIGURE

4 illustrates a case witlh = 2. Let ¢; andc; denote the signed lengths of the seg-
mentsA; B; andQC;, let f and f; denote thel-dimensional volumes df¢ and of

the simplices with basis}, and letu. andv be nonnegative reals. Using the obvious
generalization of the volume principle we have

>/ + va) = Z_ 1 ulefa) +0) = 31/ LD + )
/Z (fi/f) +v)

=(d+1)?/(u+v(d+1)).

Here we used the fact that the arithmetic mean is greater than or equal to the har-
monic mean, and that_, f;/f = 1. One could also add the less interesting gen-
eralization of part (i) of Theorem 1, namely, (uc; + vg;)/q; = u+ v(d + 1).

The special cas¢ = 3, with B; the foot of the altitude fromd;, and(@ the incenter
appears in0] and [15]. In the former,u = 3 andv = 1, so that the lower bound

is 16/7; Murray Klamkin was one of the solvers ¢f). In [15], v = 0 andu = 1,

hence the lower bound is 16.

Acknowledgment. The authors are indebted to the referees for suggestions that greatly improved the presenta-
tion of the present paper.
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FIGURE 4: An illustration of the content and notation of comment (vii)
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