Drill #3:

1. The following pseudo-code will sort an array with 3 elements:

CEX(a, 1,2);

CEX(a, 1,3);

CEX(a, 2,3);

Let us call it 3-sort(a,j) //3 sorts the 3 elements a[j], a[j+1], a[j+2]

Let a be an array with 6 elements.

Consider the following algorithm:

3-sort(a,0);

3-sort(a,3);

merge(a, 0, 3); //merge merges the 2 sorted sub arrays

Execute this code on the array 4, 1, 5, 9, 2, 6. Show the resulting array after each call to CEX.

How many CEX calls will be made to sort an array with 6 elements using the above code.

Can you design a recursive algorithm to sort an array with n elements using this scheme?

2. Convert the following infix expression to postfix:

 (26 + 89*6)*(54 – 3*(57 – 32*2)) – 288/(35 – 11*(13 – 12)) + 193.

3. Evaluate the postfix expression.

4. Evaluate the infix expression.

5. The correctness proof of recursive algorithms is usually accomplished by induction on “size”.

 Your first task is to identify what is to be used as the “size”.

 Then you prove the base case, which will usually involve the exit condition.

 Next you have to ascertain that the recursive calls indeed reduce the size of sub-problems and that

 eventually the exit condition is reached.

 Finally you establish the induction step.

a. Prove that the following recursive algorithm computes 3n – 2n
//n is a non-negative integer

static int tt(int n) {

 if (n <= 1) return n;

 else return (5*tt(n – 1) – 6*tt(n – 2));

}

 b Prove the correctness of the following algorithm

static int max(int [] a, n) {

//Return the maximum element in an array with n integers

 if (n = 0) return a[n];

 else return (a[n-1] > max(a, n – 1) ? a[n – 1] : max(a, n – 1));

}

6. In the following assignment instance do:

162 134 159 121 142 147 192

121 122 150 183 123 139 132

132 112 192 109 100 176 143

150 159 179 178 156 184 185

157 131 171 155 154 114 156

169 199 113 147 114 153 159

196 172 121 105 113 112 192

a. What is the cost of the permutation [3, 7, 1, 4, 6, 5, 2]?

b. Reduce each row and each column and try to identify the cheapest assignment.

6. In the following TSP instance do:

62 34 59 21 42 47 92

21 22 50 83 23 39 32

32 12 92 39 29 76 43

50 59 79 78 56 84 85

57 31 71 55 54 14 56

69 99 13 47 14 53 59

96 72 21 45 13 12 92

1. What is the cost of the Tour [3, 7, 1, 4, 6, 5, 2]?

2. What is the cost of the permutation whose cantor digit representation is 3600?

3. The greedy tour:

· Start from city #1.

· Repeat: From current city go to the cheapest city not visited.

· Until all cities are visited, return to city #1.

Evaluate the Greedy tour. Can you find a better tour?

7. Convert the following pattern matching pseudo-code algorithm to a Java method and prove its correctness:

// find the pattern P[0..m – 1] in the string S[1..n]

 j (0; matched (false;

 while (j <= n – m) and (not matched)

 begin

 j (j + 1;

 r (0; matched (true;

 while (r , m) and matched

 begin

 matched <- matched and (P[r] = S[j+r]);

 r (r + 1;

 end;

 end;

 return(j);

8. You have a stack of pancakes. You wish to sort them so no bigger pancake lies on top of a smaller one. You can stick a spatula any where in the stack and flip it. For instance, if the stack of pancakes is 6, 7, 12, 16, 9 7 11 you can flip the stack with a single flip to the new stack: 16, 12, 7, 6, 9 7, 11. Show that you can sort a stack with n pancakes by using at most 2n flips.

9. Write a method that accepts a stack of pancakes (represented by an array of integers) and sorts the stack in no more than 2n flips.
