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 Fifty years ago Stanko Bilinski showed that Fedorov's enumeration of 
convex polyhedra having congruent rhombi as faces is incomplete, although 
it had been accepted as valid for the previous 75 years. The dodecahedron he 
discovered will be used here to document errors by several mathematical 
luminaries. It also prompted an examination of the largely unexplored topic 
of analogous non-convex polyhedra, which led to unexpected connections 
and problems. 
 
Background. 
 
 In 1885 Evgraf Stepanovich Fedorov published the results of several 
years of research under the title "Elements of the Theory of Figures" [9] in 
which he defined and studied a variety of concepts that are relevant to our 
story. This book-long work is considered by many to be one of the mile-
stones of mathematical crystallography.  For a long time this was, essen-
tially, inaccessible and unknown to Western researchers except for a sum-
mary [10] in German.1 
 
 Several mathematically interesting concepts were introduced in [9]. 
We shall formulate them in terms that are customarily used today, even 
though Fedorov's original definitions were not exactly the same.  First, a 
parallelohedron is a polyhedron in 3-space that admits a tiling of the space 
by translated copies of itself. Obvious examples of parallelohedra are the 
cube and the Archimedean six-sided prism.  The analogous 2-dimensional 
objects are called parallelogons; it is not hard to show that the only polygons 
that are parallelogons are the centrally symmetric quadrangles and hexagons. 
It is clear that any prism with a parallelogonal basis is a parallelohedron, but 
we shall encounter many parallelohedra that are more complicated. It is clear 
that any non-singular affine image of a parallelohedron is itself a parallelo-
hedron. 
 Another new concept in [9] is that of zonohedra.  A zonohedron is a 
polyhedron such that all its faces are centrally symmetric; there are several 
equivalent definitions. All Archimedean prisms over even-sided bases are 
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zonohedra, but again there are more interesting examples. A basic result 
about zonohedra is: 
 
 Each convex zonohedron has a center. 
 
 This result is often attributed to Aleksandrov [1] (see [5]), but in fact 
is contained in a more general theorem2 of Minkowski [27, p. 118, Lehrsatz 
IV].  Even earlier, this was Theorem 23 of Fedorov ([9, p. 271], [10, p. 
689]), although Fedorov's proof is rather convoluted and hard to follow. 
 
 We say that a polyhedron is monohedral (or is a monohedron) pro-
vided its faces are all mutually congruent.  The term "isohedral" –– used by 
Fedorov [9] and Bilinski [3] –– nowadays indicates the more restricted class 
of polyhedra with the property that their symmetries act transitively on their 
faces.3  The polyhedra of Fedorov and Bilinski are not (in general) "isohe-
dra" by definitions that are customary today.  We call a polyhedron rhombic 
if all its faces are rhombi.  It is an immediate consequence of Euler's theo-
rem on polyhedra that the only monohedral zonohedra are the rhombic ones. 
 
 One of the results of Fedorov ([9, page 267], [10, page 689]) is con-
tained in the claim: 
 
 There are precisely four distinct types of monohedral convex zonohe-
dra: the rhombic triacontahedron T, the rhombic icosahedron F, the rhom-
bic dodecahedron K, and the infinite family of rhombohedra (rhombic hexa-
hedra) H. 
 
 "Type" here is to be understood as indicating classes of polyhedra 
equivalent under similarities. The family of rhombohedra contains all poly-
hedra obtained from the cube by dilatation in any positive ratio in the direc-
tion of a body-diagonal. 
 
 These polyhedra are illustrated in Figure 1; they are sometimes called 
isozonohedra. The polyhedra T and K go back at least to Kepler [23], while 
F was first described by Fedorov [9]. I do not know when the family H was 
first found –– it probably was known in antiquity. 
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 An additional important result from Fedorov [9] is he following; no-
tice the change to "combinatorial type" from the "affine type" that is inherent 
in the definition. 
 
 Every convex parallelohedron is a zonohedron of one of the five com-
binatorial types shown in Figure 2.  Conversely, every convex zonohedron of 
one of the five combinatorial types in Figure 2 is a parallelohedron.4  
 
 Fedorov's proof is not easy to follow; a more accessible proof of Fe-
dorov's result can be found in [2, Ch. 8]. 
 

T F

K H  
Figure 1. The four isozonohedra (convex rhombic monohedra) enumerated 
by Fedorov.  Kepler found the triacontahedron T and the dodecahedron K, 
while Fedorov discovered the icosahedron F.  The infinite class H of rhom-
bic hexahedra seems to have been known much earlier. 
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(a) (b)

(c) (d) (e)  
Figure 2.  Representatives of the five combinatorial types of convex paral-
lelohedra, as determined by Fedorov [9]. (a) is the truncated octahedron (an 
Archimedean polyhedron); (b) is an elongated dodecahedron (with regular 
faces, but not Archimedean);  (c) is Kepler's rhombic dodecahedron K (a 
Catalan polyhedron); (d) is the Archimedean 6-sided prism; and (e) is the 
cube. 
 

 
 
Bilinski's rhombic dodecahedron. 
 
 Fedorov's enumeration of monohedral rhombic isohedra (called isozo-
nohedra by Fedorov and Bilinski, and by Coxeter [7]) mentioned above 
claimed that there are precisely four distinct types (counting all rhombohe-
dra as one type).  Considering the elementary character of such an enumera-
tion, it is rather surprising that it took three-quarters of a century to find this 
to be mistaken.5 Bilinski [3] found that there is an additional isozonohedron 
and proved:  
 
 Up to similarity, here are precisely five distinct convex isozonohedra. 
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 The rhombic monohedral dodecahedron found by Bilinski shall be 
denoted B; it is not affinely equivalent to Kepler's dodecahedron (denoted 
K) although it is of the same combinatorial type.  Bilinski also proved that 
there are no other isozonohedra.  To ease the comparison of B and K, both 
are shown in Figure 3. 
 

K B  
Figure 3. The two convex rhombic monohedra (isozonohedra): Kepler's K 
and Bilinski's B. 
 
 
 Bilinski's proof of the existence of the dodecahedron B is essentially 
trivial, and this makes it even more mysterious how could Fedorov have 
missed it.6  The proof is based on two observation:  
 
 (i) All faces of every convex zonohedron are arranged in zones, that is 
families of faces in which all members share parallel edges of the same 
length; and  
 
 (ii) All edges of such a zone may be lengthened or shortened by the 
same factor while keeping the polyhedron zonohedral.  
 
 In particular, all such edges on one zone can be deleted (shrunk to 0).  
Performing such a zone deletion –– a process mentioned by Fedorov –– 
starting with Kepler's rhombic triacontahedron T yields (successively) Fe-
dorov's icosahedron F, Bilinski's dodecahedron B, and two rhombohedra, the 
obtuse Ho and the acute Ha.  This family of isozonohedra that are descen-
dants of the triacontahedron is shown in Figure 4. The proof that there are no 
other isozonohedra is slightly more complicated and is not of particular in-
terest here. 
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T

Ho Ha

B

F

 
Figure 4. The triacontahedron and its descendants: Kepler's triacontahedron 
T, Fedorov's icosahedron F, Bilinski's dodecahedron B, and the two hexahe-
dra, the obtuse Ho and the acute Ha.  The first three are shown by .wrl illus-
trations in [25], and other web pages, 
 
 
 The family of "direct" descendants of Kepler's rhombic dodecahedron 
K is smaller; it contains only one rhombohedron H*o, see Figure 5. How-
ever, one may wish to include in the family a "cousin" H*a –– consisting of 
the same rhombi as H*o, but in an acute conformation. 
 One of the errors in the literature dealing with Bilinski's dodecahedron 
is the assertion by Coxeter [7, p. 148] that the two rhombic dodecahedra –– 
Kepler's and Bilinski's –– are affinely equivalent. To see the affine non-
equivalence of the two dodecahedra (easily deduced even from the drawings  
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K

H*o H*a  
Figure 5.  Kepler's rhombic dodecahedron K and its descendant, rhombohe-
dron H*o. The rhombohedron H*a is "related" to them since its faces are 
congruent to those of the other two isozonohedra shown; however, it is not 
obtainable from K by zone elimination. 
 
in Figure 3), consider the long (vertical) body-diagonal of Bilinski's dodeca-
hedron (Figure 3(b)). It is parallel to four of the faces, and in each face to  
one of the diagonals. In two faces this is the short diagonal, in the other two 
the long one. But in the Kepler dodecahedron the corresponding diagonals 
are all of the same length. Since ratios of lengths of parallel segments are 
preserved under affinities, this establishes the non-equivalence. 
 
 If one has a model of Bilinski's dodecahedron in hand, one can look at 
one of the other diagonals connecting opposite 4-valent vertices, and see that 
no face diagonal is parallel to it. This is in contrast to the situation with Ke-
pler's dodecahedron. 
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 By the theorems of Fedorov mentioned above, since Bilinski's do-
decahedron B is a zonohedron combinatorially equivalent to Kepler's, it is a 
parallelohedron.  This can be easily established directly, most simply by ma-
nipulating three or four models of B. It is strange that Bilinski does not men-
tion the fact that B is a parallelohedron. 
 
 In this context we have to mention a serious error committed by A. 
Schoenflies [30, pages 467 and 470] and very clearly formulated by E. 
Steinitz.  It is more subtle than Coxeter's, who may have been misguided by 
the following statement of Steinitz [34, page 130]: 
 

The aim [formulated previously in a different form] is to determine 
the various partitions of the space into congruent polyhedra in paral-
lel positions. Since an affine image of such a partition is a partition of 
the same kind, affinely related partitions are not to be considered as 
different. Then there are only five convex partitions of this kind. [My 
translation and comments in brackets] 

 
 How did excellent mathematicians come to commit such errors? The 
confusion illustrates the delicate interactions among the concepts involved, 
considered by Fedorov, Dirichlet, Voronoi, and others. A correct version of 
Steinitz's statement would be (see Delone [8]): 
 
 Every convex parallelohedron P is affinely equivalent to a parallelo-
hedron P' such that a tiling by translates of P' coincides with the tiling by the 
Dirichlet-Voronoi regions of the points of a lattice L'. The lattice L' is affi-
nely related to the lattice L associated with one of the five Fedorov paral-
lelohedra  P". But P' need not be the image of P" under that affinity. Affine 
transformations do not commute with the formation of Dirichlet-Voronoi re-
gions. 
 
 In particular, isozonohedra other than rhombohedra are not mapped 
onto isozonohedra under affine transformations that are not similarities. 
 
 As an illustration of this situation, it is easy to see that Bilinski's do-
decahedron B is affinely equivalent to a polyhedron B' that has an insphere 
(a sphere that touches all its faces). The centers of a tiling by translates of B' 
form a lattice L' such that this tiling is formed by Dirichlet-Voronoi regions 
of the points of L'.  The lattice L' has an affine image L such that the tiling 
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by Dirichlet-Voronoi regions of the points of L is a tiling by copies of the 
Kepler dodecahedron K. However, since the Dirichlet domain of a lattice is 
not affinely associated with the lattice, there is no implication that either B 
or B' is affinely equivalent to K. 
 
 A simple illustration of the analogous situation in the plane is possible 
with hexagonal parallelogons (as mentioned earlier, a parallelogon is a 
polygon that admits a tiling of the plane by translated copies). As shown in 
Figure 6, the tiling is by the Dirichlet regions of a lattice of points. This lat-
tice is affinely equivalent to the lattice associated with regular hexagons, but 
the tiling is obviously not affinely equivalent to the tiling by regular hexa-
gons. 
 

 
Figure 6. An affine transform of the lattice of centers at left leads to the lat-
tice of the tiling by regular hexagons. The Dirichlet domains of the points of 
the lattice are transformed into the hexagons at right, which clearly are not 
affinely equivalent to regular hexagons. 
 
 It is appropriate to mention here that for simple parallelohedra (those 
in which all vertices have valence 3) that tile face-to-face Voronoi proved 
[38] that each is the affine image of a Dirichlet-Voronoi region.  For various 
strengthenings of this result see [26]. 
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Non-convex parallelohedra. 
 
 Bilinski's completion of the enumeration of isozonohedra needs no 
correction. However, it may be of interest to examine the situation if non-
convex rhombic monohedra are admitted; we shall modify the original defi-
nition and call them isozonohedra as well. Moreover, there are various rea-
sons why one should investigate –– more generally –– non-convex paral-
lelohedra.  
 
 It is of some interest to note that the characterization of plane paral-
lelogons (convex or not) is completely trivial. A version is formulated as 
Exercise 1.2.3(i) of [16, page 24]: A closed topological disk M is a paral-
lelogon if and only if it is possible to partition the boundary of M into four 
or six arcs, with opposite arcs translates of each other. Two examples of 
such partitions are shown in Figure 7. 

 Another reason for considering non-convex parallelohedra is that 
there is no intrinsic justification for their exclusion, while –– as we shall see 
–– many interesting forms become possible, and some tantalizing problems 
arise. The crosses, semicrosses and other clusters studied by Stein [32] and 
others provide examples of such questions and results7. It also seems reason-
able that the use of parallelohedra in applications need not be limited to con-
vex ones. 
 
 It is worth noting that by Fedorov's Definition 24 (page 285 of [9], 
page 691 of [10]) and earlier ones, a parallelohedron need not be convex, 
nor do its faces need to be centrally symmetric. 
 
 

 
Figure 7. Planigons without center have boundary partitioned into 4 or 6 
arcs, such that the opposite arcs are translates of each other.  



Version 2/3/10  Page 11 

 Two non-convex rhombic monohedra (in fact, isohedra) have been 
described in the nineteenth century; see Coxeter [7, pages 102 – 103, 115 – 
116]. Both are triacontahedra, and are selfintersecting. This illustrates the 
need for a precise description of the kinds of polyhedra we wish to consider 
here. 
 
 Convex polyhedra discussed so far need little explanation, even 
though certain variants in the definition are possible. However, now we are 
concerned with wider classes of polyhedra regarding which there is no gen-
erally accepted definition.8 Unless the contrary is explicitly noted, in the pre-
sent note we consider only polyhedra with surface homeomorphic to a 
sphere and adjacent faces not coplanar.  We say they are of spherical type.  
There are infinitely many combinatorially different rhombic monohedra of 
this type –– to obtain new ones it is enough to "appropriately paste together" 
along common faces two or more smaller polyhedra.  This will interest us a 
little bit later.  
 
 The two triacontahedra mentioned above are not accepted in our dis-
cussion. However, a remarkable non-convex rhombic hexecontahedron of 
the spherical type was found by Unkelbach [37]; it is shown in Figure 8. Its 
rhombi are the same as those in Kepler's triacontahedron T. It is one of al-
most a score of rhombic hexecontahedra described in the draft of [15]; how-
ever, all except U are not of the spherical type. 
 

 
Figure 8. Unkelbach's hexecontahedron. It has pairs of disjoint, coplanar but 
not adjacent faces, which are parts of the faces of the great stellated triacon-
tahedron.  All its vertices are distinct, and all edges are in planes of mirror 
symmetry. 
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 For a more detailed investigation of non-convex isozonohedra, we first 
restrict attention to rhombic dodecahedra.  We start with the two convex  
ones – Kepler's K and Bilinski's B – and apply a modification we call inden-
tation.  An indentation is carried out at a 3-valent vertex of a isozonohedron. 
It consists of the removal of the three incident faces and their replacement by 
the three "inverted" faces – that is the triplet of faces that has the same outer 
boundary as the original triplet, but fits on the other side of that boundary. 
This is illustrated in Figure 9, where we start from Kepler's dodecahedron K 
shown in (a), and indent the nearest 3-valent vertex (b).  It is clear that this  
 

(a) (b)

(c) (d)  
Figure 9.  Indentations of the Kepler rhombic dodecahedron K, shown in (a).  
In (b) is presented the indentation at the vertex nearest to the observer; this is 
the only indentation arising from (a).  A double indentation of the dodecahe-
dron in (a), which is a single indentation of (b), is shown in (c); it fails to be 
a polyhedron of the spherical type, since two distinct vertices coincide at the 
center; hence it is not admitted. By stretching one of the zones, as in (d), an 
admissible polyhedron is obtained –– but it is not a rhombic monohedron. 
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results in a non-convex polyhedron.  Since all 3-valent vertices of Kepler's 
dodecahedron are equivalent, there is only kind of indentation possible. On 
the other hand, Bilinski's dodecahedron B in Figure 10(a) has two distinct 
kinds of 3-valent vertices, so the indentation construction leads to two dis-
tinct polyhedra; see parts (b) and (c) of Figure 10. 
 
 

(a)

(b) (c)

(d) (e)  
 

Figure 10. Indentations of the Bilinski dodecahedron shown in (a).  The two 
different indentations are illustrated in (b) and (c), the former at an "obtuse" 
3-valent vertex, the latter at an "acute" vertex. The double indentation of (a), 
resulting from a single indentation of (b), is presented in (d); (e) shows an 
additional indentation of (c) which, however, is not a polyhedron in the 
sense adopted here, since two faces overlap in the gray rhombus. 
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 Returning to Figure 9, we may try to indent one of the 3-valent verti-
ces in (b). However, none of the indentation produces a polyhedron of 
spherical type. The minimal departure from this type occurs on indenting the 
vertex opposite to the one indented first; in this case the two indented triplets 
of faces meet at the center of the original dodecahedron (see Figure 9(c)).  
We may eliminate this coincidence by stretching the polyhedron along the 
zone determined by the family of parallel edges that do not intrude into the 
two indented triplets. This yields a parallelogram-faced dodecahedron that is 
of spherical type (but not a rhombic monohedron); see Figure 9(d). A related 
polyhedron is shown in a different perspective as Figure 121 in Fedorov's 
book [9]. 
 
 It is of significant interest that all the isozonohedra in Figures 9 and 
10, –– even the ones we do not quite accept, shown in Figures 9(c) and 10(e) 
–– are parallelohedra. This can most easily be established by manipulating a 
few models; however, graphical or other computational verification is also 
readily possible. 
 
 To summarize the situation concerning dodecahedral rhombic mono-
hedra, we have the following polyhedra of spherical type: 
 
 Two convex dodecahedra (Kepler's and Bilinski's); 
 Three simply indented dodecahedra (one from Kepler's polyhedron, 
two from Bilinski's) 
 One doubly indented dodecahedron (from Bilinski's polyhedron). 
 
 We turn now to the two larger isozonohedra, Fedorov icosahedron F 
and Kepler's triacontahedron T.  Since each has 3-valent vertices, it is possi-
ble to indent them, and since the 3-valent vertices of each are all equivalent 
under symmetries, a unique indented polyhedron results in each case (Figure 
11).   
 The icosahedron F admits several non-equivalent double indentations, 
see Figure 12; two are of special interest, and we shall denote them by D1 
and D2. There are many other multiple –– up to sixfold –– indentations; their 
precise number has not been determined.  An eightfold indentations of the 
triacontahedron T is shown in [39, page 196]; it admits several additional 
indentations. 
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(a) (b)

(c) (d)  
Figure 11. (a) Icosahedron F and (b) its indentation; (c) Triacontahedron T 
and (d) its indentation. 
 
 
 The double indentations D1 and D2 of F shown in Figure 12 are quite 
surprising and deserves special mention: They are parallelohedra!  Again, 
the simplest way to verify this is by using a few models, and investigating 
how they fit.  This contrasts with the singly indented icosahedron, which is 
not a parallelohedron. None of the other isozonohedra obtainable by indenta-
tion of F or T seem to be parallelohedra. 
 
 A different construction of isozonohedra is through the union of two 
or more given ones along whole faces, but without coplanar adjacent faces; 
clearly this means that all those participating in the union must belong to the 
same family of rhombic monohedra – either the family of the triacontahe-
dron, or of Kepler's dodecahedron, or of rhombohedra (with equal rhombi) 
not in either of these families. Besides a brief notice of this possibility by 
Fedorov, the only other reference is to the union of two rhombohedra men-
tioned by Kappraff [22, page 381].9 
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(a)  F

(c)  D2(b)  D1  
(a)       (b) 

Figure 12. (a) The Fedorov rhombic icosahedron F; (b) A double indentation 
of the F yields a non-convex rhombic icosahedron D1 of the spherical type 
that is a parallelohedron; (c) A different double indentation D2 is also a par-
allelohedron. 
 
 
 
 
 For an example of this last construction, by attaching two rhombohe-
dra in allowable ways one can obtain three distinct decahedra, one of which 
is shown in Figure 13. Another is chiral, that is, comes in two mirror-image 
forms. This construction can be extended to arbitrarily long chains of rhom-
bohedra; from n rhombohedra there results a parallelohedron with 4n + 2 
faces, see Figure 13 for n = 3.  For another example, from three acute and 
one obtuse rhombohedra of the triacontahedron family, that share an edge, 
one can form a decahexahedron E. It is chiral, but it has an axis of 2-fold ro-
tational symmetry.  By suitable unions of one of these decahexahedron with 
a chain of n rhombohedra (n ≥ 2), on can obtain isozonohedra with 4n + 16 
faces. All isozonohedra mentioned in this paragraph happen to be parallelo-
hedra as well. Hence there are rhombic monohedral parallelohedra for all 
even k ≥ 6 except for k = 8. 
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Figure 13. Isozonohedra with 10 and 14 faces. 
 
 
 The isozonohedra just described show that there exist rhombic mono-
hedral parallelohedra with arbitrarily long zones. However, there is a related 
open problem:  
 
 Given an even integer k ≥ 4, is there a rhombic monohedral paral-
lelohedron such that every zone has exactly k faces? 
 
 The cube has k = 4, the rhombic dodecahedra K and B have k = 6, and 
the doubly indented icosahedra D1 and D2 are examples with k = 8. No in-
formation is available for any k ≥ 10. 
 
 While the number of examples non-convex isozonohedra and paral-
lelohedra could be increased indefinitely, in the next section we shall pro-
pose a possible explanation of which isozonohedra are parallelohedra.10 
 
 
Remarks. 
 
 (i) The parallelohedra discussed above lack a center of symmetry, 
which was traditionally taken as present in parallelohedra and more gener-
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ally – in zonohedra.  Convex zonohedra have been studied extensively; they 
have many interesting properties, among them central symmetry11. However, 
the assumption of central symmetry (of the faces, and hence of the polyhe-
dra) amounts to putting the cart before the horse if one wishes to study par-
allelohedra –– that is, polyhedra that tile space by translated copies. 
 
 In fact, the one and only immediate consequence of the assumed prop-
erty of polyhedra that allow tilings by translated copies is that their faces 
come in pairs that are translationally equivalent. For example, the octagonal 
prism in Figure 14 is not centrally symmetric, and its bases have no center of 
symmetry either. But even so, it clearly is a parallelohedron.  The dodecahe-
dra in Figures 9(b) and 10(b),(c) have no center of symmetry although their 
faces are rhombi and have a center of symmetry each. On the other hand, the 
doubly indented polyhedron is Figure 10(d) has a center.  As mentioned be-
fore, each of these is a parallelohedron. 
 
 

 
Figure 14. A non-convex parallelohedron without a center of symmetry. 
 
 
 We wish to claim that central symmetry is a red herring as far as par-
allelohedra are concerned. The reason that the requirement of central sym-
metry may appear to be natural is that studies of parallelohedra have practi-
cally without exception been restricted to convex ones.  Now, for convex 
polyhedra the pairing of parallel faces by translation implies that they have 
equal area, whence by a theorem of Minkowski (see endnote 2) the polyhe-
dron has a center, which implies that the paired faces coincide with their im-
age by reflection in a point – that is, are necessarily centrally symmetric, and 
therefore are zonohedra.  But this argument is not valid for non-convex par-
allelohedra, hence such polyhedra need not have a center of symmetry. 
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 In his first short description of non-convex parallelohedra Fedorov 
writes (§83 in [9, p. 306]): 
 

 The preceding deduction of simple [that is, centrally symmetric 
polyhedra with pairwise parallel and equal faces] convex parallelohe-
dra is equally applicable to simple concave [that is, non-convex] ones, 
and hence we bring here only illustrations. We do not show the con-
cave tetraparallelohedron [the hexagonal prism] since this is simply a 
prism with a concave par-hexagon as basis.  Fig. 121 presents the or-
dinary, and Fig. 122 the elongated concave hexaparallelohedron [the 
rhombic dodecahedron and the elongated dodecahedron]; Fig. 123 
shows the concave heptaparallelohedron [the truncated octahedron]. 
Obviously, there exists no concave triparallelohedron [cube]. (My 
translation and bracketed remarks) 

 
 Fedorov's parallelohedron in Figure 121 of [9] is isomorphic to the 
polyhedron shown in our Figure 9(d).  A monohedral rhombic dodecahedron 
combinatorially equivalent to it is shown in our Figure 10(d) and derived 
from the Bilinski dodecahedron.   
 
 However, Fedorov does not provide any proof for his assertion, and in 
fact it is not valid in general. For example, his Figure 123 does not show a 
polyhedron of spherical type, since one of the edges is common to four 
faces. This can be remedied by lengthening the short horizontal edges, but 
shows the need for care in carrying out the construction. 
 
 (ii) The study of non-convex parallelohedra necessitates the revi-
sion of various well-established facts concerning convex parallelohedra. For 
example, one of the crucial insights in the enumeration of parallelohedra 
(and parallelotopes in higher dimensions) is the property that every zone has 
either four or six faces. This is not true for non-convex parallelohedra. For 
example, the double indentation D1 of Fedorov's F shown in Figure 12(b) is 
a parallelohedron –– even though all zones of D1 have 8 faces. 
 
 For another example, in some cases changing of the lengths of edges 
of a zone has limitations if the spherical type is to be preserved. 
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 At present, there seems to be no clear understanding of the require-
ments on a polyhedron of spherical type to be a parallelohedron. As men-
tioned earlier, the three indented polyhedra in Figures 9(b) and 10(b),(c) are 
parallelohedra: They can be stacked like six-sided prisms.  In fact, with a 
grain of salt added, starting with suitably chosen six-sided prisms, they may 
be considered as examples of Fedorov's second construction of non-convex 
polyhedra [9, p. 306]: 
 

 If we replace one or several faces of a parallelohedron, or parts 
of these, by some arbitrary surfaces supported on these same broken 
lines, in such a way that a closed surface is obtained, and observing 
that precisely the same [translated] replacement is made in parallel 
position on the faces that correspond to the first ones or their parts, 
then, obviously the new figure will be a parallelohedron, though with-
out a center … . 

 
 It seems clear that Fedorov did not consider this construction impor-
tant or interesting, since he did not provide even a single illustration. But it 
does lead to parallelohedra with some or all faces triangular, in contrast to 
the convex case; an example is shown in Figure 15. A more elaborate exam-
ple of a non-convex parallelohedron with some triangular faces, that does 
not admit a lattice tiling, is described by Szabo [35]. 
 

 
Figure 15. A monohedral parallelohedron with triangles as faces. 

 Another difference between convex and non-convex parallelohedra is 
that the convex ones can be decomposed into rhombohedra; this is of interest 
in various contexts – see, for example, Hart [18], Ogawa [28]. In general, 
such decomposition is not possible for non-convex parallelohedra. For ex-
ample, the doubly indented dodecahedron in Figure 10(d) is not a union of 
rhombohedra. 
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 (iii) Examination of the various isozonohedra that are –– or are not 
–– parallelohedra, together with the observation that questions of central 
symmetry appear irrelevant in this context, lead to the following conjecture: 
 
 Conjecture.  Let P be a sphere-like polyhedron, with no pairs of co-
planar faces.  If the boundary of P can be partitioned into pairs of non-
overlapping "patches" {S1, T1}; {S2, T2}; ... ; {Sr, Tr}, each patch a union of 
contiguous faces, such that the members in each pair {Si, Ti} are translates 
of each other, and the complex of "patches" is topologically equivalent as a 
cell complex to one of the parallelohedra in Figure 2, then P is a parallelo-
hedron. Conversely, if no such partition is possible then P is not a paral-
lelohedron. 
 
 As illustrations of the conjecture we can list the following examples: 
 
(a) The three singly indented dodecahedra in Figures 9 and 10 satisfy the 
conditions, with the patches S1, T1 formed by the triplet of indented faces 
and their opposites, and the other pairs formed by pairs of opposite faces.  
Then this cell complex is topologically equivalent to the cell complex of the 
faces of the six-sided prism (Figure 2(d)). As we know, these dodecahedra 
are parallelohedra. Note that the fact that they are combinatorially equivalent 
to the convex dodecahedra K and B is irrelevant, since the complex of pairs 
of faces of the indented polyhedra is not isomorphic to that of the un-
indented ones: Some pairs {Si, Ti} of parallel faces are separated by only a 
single other face while in K and B they are separated by two other faces. 
 
(b) The doubly indented dodecahedron in Figure 10(d) complies with the 
requirements of the conjecture in a different way: Each pair {Si, Ti} consists 
of just a pair of parallel faces; the complex so generated is isomorphic to the 
one arising from Kepler's K. 
 
(c) The doubly indented icosahedron D1 of Fedorov's F, shown in Figure 
12(b), provides additional support for the conjecture. Two of the pairs –– say  
{S1, T1}and{S2, T2} –– are formed by the indented triplets and their oppo-
sites. The other pairs {Si, Ti} are the remaining four pairs of parallel faces. 
The complex they form is isomorphic to the face complex of the elongated 
dodecahedron shown in Figure 2(b).  The same situation prevails with the 
doubly indented icosahedron D2 of Figure 12(c).  Other double indentations 
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of the icosahedron F, as well as the single indentation of F, fail to satisfy the 
assumptions of the conjecture and are not parallelohedra. 
 
(d) No indentation of the rhombic triacontahedron satisfies the assump-
tions of the conjecture, and in fact none is a parallelohedron. 
 
(e) The decahexahedron E mentioned above has a decomposition into 
pairs{Si, Ti} that is isomorphic to the complex of the faces of the cube. The 
same situation prevails with regard to the chains of rhombohedra mentioned 
above. 
 
 (iv) The present paper leaves open all questions regarding parallelo-
hedra that are not rhombic monohedra. In particular, it would be of consid-
erable interest to generalize the above conjecture to these parallelohedra. 
Such an extension would also have to cover the results on "clusters" of cubes 
such as the crosses and semicrosses investigated by S. K. Stein and others 
[32], [33], [14]. One can also raise the question what are analogues for suita-
bly defined "clusters" of rhombohedra, or other parallelohedra. 
 
 (v) There just possibly may be a prehistory to the Bilinski dodeca-
hedron. As was noted by George Hart [17] [18], a net for a rhombic dodeca-
hedron was published by John Lodge Cowley [6] in the mid-eighteenth cen-
tury, see Figure 16. The rhombi in this net appear more similar to those of 
the Bilinski dodecahedron than to the rhombi of Kepler's. However, these 
rhombi do not have the correct shape and cannot be folded to form any 
polyhedron with planar faces. (Since the angles of the rhombi are, as close as 
can be measured, 60° and 120°, the obtuse angles of the shaded rhombus 
would be incident with two other 120° angles – which is impossible.) An in-
ternet discussion about the net mentioned the possibility that the engraver 
misunderstood the author's instructions; however, it is not clear what the 
author actually had in mind, since no text describes the polyhedron. The 
later edition of [6] mentioned by Hart [17] was not available to me. 
 
 

* * * * * 
 The author appreciates the helpful comments of a referee. 
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Figure 16. Cowley's net for a rhombic dodecahedron. 
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Endnotes 
 
1  The only somewhat detailed description of Fedorov's work available 
in English (and in French) is in [31]. Fedorov's book [9] was never translated 
to any Western language, and its results have been rather inadequately de-
scribed in the Western literature. The lack of a translation is probably at least 
in part to blame for ignorance of its results, and an additional reason may be 
the fact that it is very difficult to read [31, page 6]. 
2  Minkowski's theorem establishes that a convex polyhedron with pair-
wise parallel faces of the same area has a center; the congruence of the faces 
in each pair follows, regardless of the existence of centers of faces (which is 
assumed for zonohedra). 
3 The term "gleichflächig" (= with equal surfaces) was quite established 
at the time of Fedorov's writing, but what it meant seems to have been more 
than the word implies. As explained in Edmund Hess's second note [21] ex-
coriating Fedorov [10] and [11], the interpretation as "congruent faces" (that 
is, monohedral) is mistaken. Indeed, by "gleichflächig" Hess means some-
thing much more restrictive. Hess formulates it in [21] very clumsily, but it 
amounts to symmetries acting transitively on the faces, that is, to isohedral. 
It is remarkable that even the definition given by Brückner (in his well-
known book [4, page 121], repeating the definition by Hess in [19] and sev-
eral other places) states that "gleichflächig" is the same as "monohedral" but 
Brückner (like Hess) takes it to mean "isohedral". Fedorov was aware of the 
various papers that use "gleichflächig", and it is not clear why he used "iso-
hedral" for "monohedral" polyhedra. In any case, this led Fedorov to claim 
that his results disprove the assertion of Hess [19] that every "gleichflächig" 
polyhedron admits an insphere. Fedorov's claim is unjustified, but with the 
rather natural misunderstanding of "gleichflächig" he was justified to think 
that his rhombic icosahedron is a counterexample.  This, and disputed prior-
ity claims, led to protests by Hess (in [20] and [21]), repeated by Brückner 
[4, page 162], and a rejoinder by Fedorov [11]. Neither side pointed out that 
the misunderstanding arises from inadequately explained terminology; from 
a perspective of well over a century later, it seems that both Fedorov and 
Hess were very thin-skinned, inflexible and stubborn. 
4  In different publications Fedorov uses different notions of "type". In 
several (for example, [10], [12]) he has only four "types" of parallelohedra, 
since the rhombic dodecahedron and the elongated dodecahedron ((c) and 
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(b) in Figure 2) are of the same type in these classifications. Since we are in-
terested in combinatorial types, we accept Fedorov's original enumeration 
illustrated in Figure 2. 
5  This is a nice illustration of the claim that errors in mathematics do 
get discovered and corrected in due course. I can only hope that if there are 
any errors in the present work they will be discovered in my lifetime.  
6  A possible explanation is in a tendency that can be observed in other 
enumerations as well: After some necessary criteria for enumeration of ob-
jects of a certain kind have been established, the enumeration is deemed 
complete by providing an example for each of the sets of criteria –– without 
investigating whether there are more than one object per set of criteria.  This 
failure of observing the possibility of a second rhombic dodecahedron (be-
sides Kepler's) is akin to the failure of so many people that were enumerat-
ing the Archimedean solids (polyhedra with regular faces and congruent ver-
tices, that is, congruent vertex stars) but missed the pseudorhombicubocta-
hedron (sometimes called "Miller's mistake"); see the detailed account of 
this "enduring error" in [13]. 
7  Recent results on crosses and semicrosses can be found in [14]. 
8  Many different classes of non-convex polyhedra have been defined in 
the literature. It would seem that the appropriate definition depends on the 
topic considered, and that a universally accepted definition is not to be ex-
pected. 
9  In carrying out this construction we need to remember that adjacent 
faces may not be coplanar.  This excludes the "semicrosses" of Stein [32] 
and other authors, although it admits the (1,3) cross. For more information 
see [33]. 
10  Crystallographers are interested in parallelohedra far more general 
than the ones considered here: The objects they study in most cases are not 
polyhedra in the sense understood here, but object combinatorially like 
polyhedra but with "faces" that need not be planar. The interested reader 
should consult [29] and [24] for more precise explanations and details. 
11  It is worth mentioning that Fedorov did not require any central sym-
metry in the definition of zonohedra ([9, page 256], [10, page 688]). How-
ever, he switched without explanation to considering only zonohedra with 
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centrally symmetric faces. As pointed out by Taylor [36], this has become 
the accepted definition. 


