
ME 586: Biology-Inspired Robotics
University of Washington, Winter 2020, Prof. Sawyer B. Fuller

Problem Set 3 (updated 2022.02.09)

Goals: familiarize you with basics of using a Kalman Filter to estimate and control the state of a flying
robot in simulation.

Optional Reading

• Optimization-Based Control by Richard M. Murray, Chapter 5: Kalman Filtering.

• Koenderink1987, “Facts on Optic Flow,” Biological Cybernetics 1987 (on the course web page) presents
a derivation of optic flow (slightly different than in class).

• Greiff2017, “Modelling and Control of the Crazyflie Quadrotor for Aggressive and Autonomous Flight
by Optical Flow Driven State Estimation,” M. Greiff, Master’s thesis, Lund University, 2017, provides
additional information about the nonlinear, Extended Kalman Filter used on the Crazyflie. link

1. State estimation using a Kalman Filter

The Kalman Filter can estimate the state of the system using sensor readings (typically fewer in
number than the size of the state), and a model of the dynamics. Given a dynamical system excited
by zero-mean process noise d and measurement noise n,

q̇ = Aq +Bu +Gd

y = Cq + n

with covariances E{ddT } = QN = QTN ≥ 0, E{nnT } = RN = RTN > 0, a Kalman Filter consists of an
observer gain matrix L such that the “state estimation dynamics”

˙̂q = Aq̂ +Bu + L(y − Cq̂)

produces a state estimate q̂ that minimizes the expected squared error using the sensor measurements
y. The quantity y − Cq̂ represents the error between the current estimate and the sensor readings,
which the filter uses to correct its estimate of the full state. Only if the system is observable can the
full state be estimated.

You will write a Kalman Filter to estimate (but not control) the state of nonlinear downward-hanging
pendulum dynamics using a noisy measurement of the angle of the pendulum. The dynamics of the
pendulum are given by

ml2θ̈ = −mg sin θ + u+ τd,

where m is the mass of at the end of the pendulum, θ is the angle of the pendulum with respect to
vertical, l is the length of the (massless) rod that connects the mass to the pivot at the top, and u is
an input torque. τd is a disturbance torque acting on the system. A sensor measures θ according to
a measurement θm = θ + nθ, where nθ is a stationary, zero-mean, Gaussian-distributed variable with
standard deviation σθ.

(a) Write the dynamics as a state-space nonlinear function, and provide the A,B,C, and D matrices
of the system linearized at θ = 0. Show that the system is observable.

(b) To formulate a Kalman Filter, the system must be excited by a non-zero disturbance, and the sys-
tem must be “reachable” by the noise (i.e. the pair (A,G) must be controllable/reachable). Provide
the G matrix corresponding to excitation by the disturbance torque τd given in the equation above.
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(c) Write a simulation of this system’s nonlinear dynamics, and implement a Kalman Filter to estimate
its state from measurements θm (note: this problem entails estimation, but not control). If you
are stuck, it may be helpful to consult the file me586_example_kalman_estimator.ipynb on the
software_examples section of the course web page for an example implementation of a Kalman
Filter on a different system. Please use the following constants:
m 0.1 kg
l 1 m
σθ 0.1 rad

Note: estimating the standard deviation σd of the disturbance noise τd is difficult in practice, so
in this problem you will instead use it as a tuning knob to achieve desired performance.

(d) For an initial angle of θ = 1 rad, your Kalman filter should follow the true state of the pendulum
relatively well. Provide a plot in your Jupyter notebook. Then, in a subsequent cell, re-simulate
the system with an initial condition of θ = 2 rad.

(e) Why does a larger excursion result in larger error in your Kalman Filter estimate?

Figure 1: Sensors of the quad-rotor Crazyflie with the “Flowdeck” sensor.

2. State estimation and LQG control of a 2D simulated quadrotor

A complete Linear Quadratic Gaussian (“LQG”) control system consists of an LQR controller and
a “Kalman Filter.” You will implement an LQG controller for 2D quadrotor dynamics for a Crazyflie
equipped with a “flowdeck” sensor board.

To implement a Kalman Filter, we must first ascertain whether our system is observable at equi-
librium. To do that we must linearize the observation model. The onboard gyroscope measures angular
velocity, providing a measurement ωm, the time-of-flight sensor provides a measurement the distance
to the surface below the helicopter rm, and the optic flow sensor provides an optic flow measurement
Ωm , according to the following models

ωm = ω + ng

rm = r + nt

Ωm = Ω + no = ω − ẋ′

r
+ no,

where each n corresponds to noise added to the sensor reading, which we assume is zero-mean Gaussian
white noise. The quantities ẋ′ and ẏ′ are velocities given in body-attached coordinates, and are the
components of the velocity vector v′ = RTv. These quantities are depicted in Figure 1.
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(a) For the downward-oriented optic flow sensor, find the optic flow as a function of your state Ω =
Ω(θy, ωy, x, ẋ, z, ż). You will need to find a relation for the distance r to the ground (as a function
of θy and z) as shown in Figure 1.

(b) Now suppose the robot is hovering near equilibrium near the desired height zd, that is, q =
[θy, ωy, x, ẋ, z, ż]

T = [0, 0, 0, 0, zd, 0]T . Show that the linearization of the nonlinear observation
model y(q) = [ω, r, Ω]T at equilibrium is given by the observation matrix

C =

0 1 0 0 0 0
0 0 0 0 1 0
0 1 0 − 1

zd
0 0


(c) Show in your notebook that with the A matrix derived in the previous problem set, that such a

system is not observable by computing the observability matrix and its rank.
(d) The reason for this is that the optic flow sensor does not measure position, only velocity, meaning

that the state x is not technically observable. But the math that calculates the gains L of a
Kalman filter require a system that is observable. We would like to nevertheless use feedback to
control our position relative to our “best guess” of position. We will create a “reduced” linearized
model of our system that does not include its non-observable x-position. Show that the pair
(Ar, Cr) of these reduced matrices are observable, and are given by

Ar =


0 1 0 0 0
0 0 0 0 0
g 0 −b/m 0 0
0 0 0 0 1
0 0 0 0 −b/m

 , Cr =

0 1 0 0 0
0 0 0 1 0
0 1 − 1

zd
0 0

 .
(e) The matrix G specifies how disturbance noise d enters the system. This can be set to the identity

matrix, but it typically is set to represent a realistic model for what noise might enter the system.
The only requirement is that the noise must be able to “control” the system, i.e, the pair (Ar, Gr)
must be controllable. Here, we will assume that there are three sources of disturbance: a) force in
the x-direction, b) force in the z-direction, and c) rotational torque around the y-axis. Show that
if the disturbance is specified in units of [Nm] for torque and [N] for force, then Gr is given by

Gr =


0 0 0
0 0 1

Jyy
1
m 0 0
0 0 0
0 1

m 0

 .

(f) In the Jupyter notebook me586_2d_crazyflie_simulator_LQG.ipynb on the software_examples
section of the course webpage, we will use an estimator that is augmented by adding a row of zeros
to the L matrix on the row corresponding to the x position state in the full system. This entails
no correction of the position estimate x̂, but still allows the lateral velocity estimate derived from
the optic flow sensor to be numerically integrated, providing an estimate of position that slowly
drifts due to sensor noise.
Finish implementation of the Kalman Filter (LQE estimator) by filling in missing elements (be-
tween comments with three ###’s.) You will need to add an extra row (in the right location) to
your Gr matrix as well. A suggested LQR controller is also implemented that does not need to
be changed. As in the previous problem, the size of the sensor noise is known but the disturbance
noise size is much harder to measure and therefore becomes your “tuning knob.” Explore how
changing weights affects the behavior of the system, increasing or decreasing the weights in the
process noise matrix QN until you get reasonable estimator performance. Provide a plot in your
notebook that shows the system estimating the state of the system under control of an LQR con-
troller that is operating using feedback from the true state rather than the estimated state (this
is usually easier to get to work correctly).
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(g) Next, close the loop, giving your LQR controller the Kalman Estimate, and provide a plot showing
your results.

Tip: The Kalman filter has a lot of moving parts and can show erratic behavior if gains are
too high. One thing you can do to help isolate such problems is to reduce the time increment dt
of your simulation to get a more precise dynamics simulation.

(h) Lastly, provide plots that show your system subject to the following effects and briefly (in a
sentence or two) explain:

i. What happens when the disturbance noise in the x-direction is much higher than the distur-
bance noise in the z-direction?

ii. Why does the position estimate have an error if the altitude is not exactly equal to zd? (such
as if you start above or below zd) Can you suggest an approach you could use to fix it?
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