ME 586: Biology-inspired robotics

Prof. Sawyer B. Fuller

Goals:

- advice for how to read a scientific paper
- Example paper presentation and discussion lead paper 0: McLeod & Dienes, "Do fielders know where to catch the ball or only how to get there"

how to read a paper

- 1. read the abstract: 2-5 min
- 2. look through the figures: 5-10 min
- 3. read the introduction: 5-20 min
- 4. read the conclusion: 10 min
- 5. read the rest of the paper: 1-10 hrs (depending on difficulty and detail desired)

this is a 3 unit course, so aim to spend about two hours per review

paper 0 presentation & discussion

Do fielders know where to go to catch the ball or only how to get there

Peter McLeod & Zoltan Dienes Journal of Experimental Psychology, 1996

Presented by Sawyer Fuller

does this fielder know where ball will land?

previous work

define: $A \triangleq \tan \alpha$ "slope" of angle to ball

• Chapman (1968) observed that if a fielder runs at a constant speed such that $\dot{A} = const$. (therefore, $\ddot{A} = 0$) she will intercept a parabolic trajectory

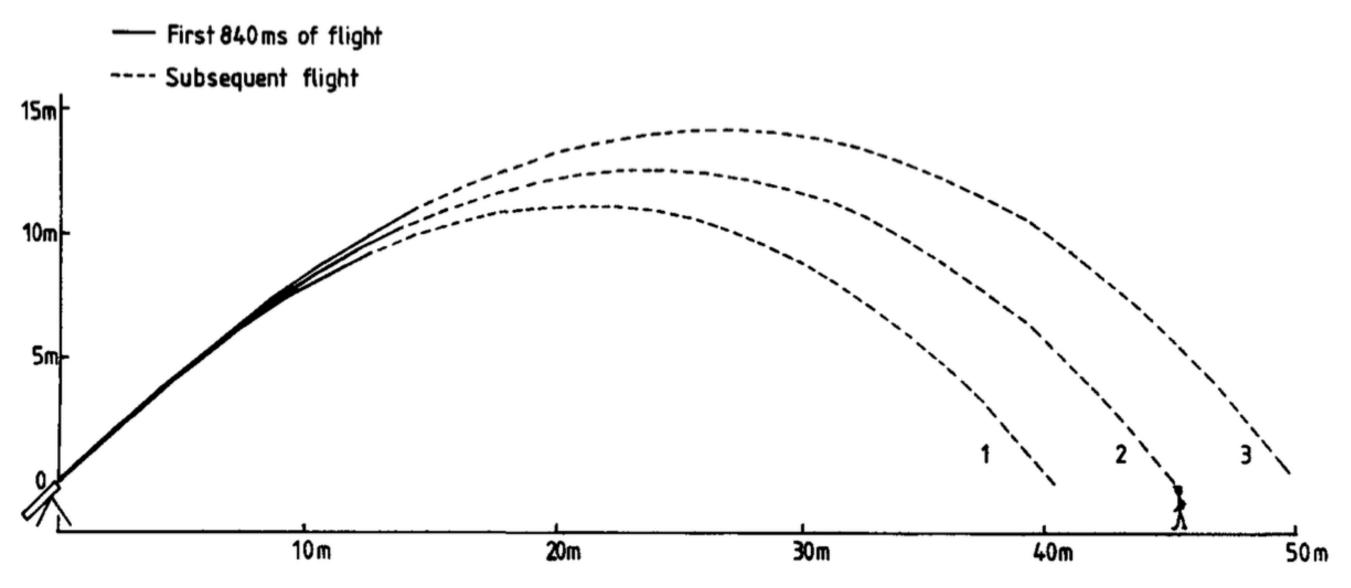
- problems:
 - because of air drag, path of ball is far from parabolic
 - does not specify how to choose the "constant running speed"

catching a ball $\tan(\alpha) =$

this paper hypothesizes an underlying mechanism

Experimental setup

- fielder catching fly balls
- only measures front-to-back motion, not side-to-side



Experimental setup

camera tracks fielder

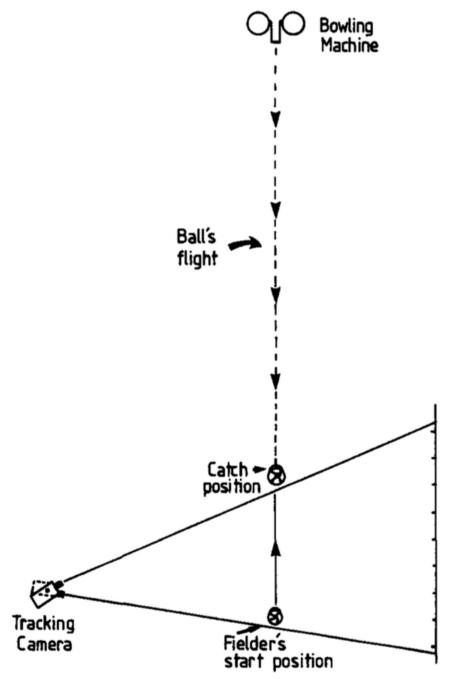
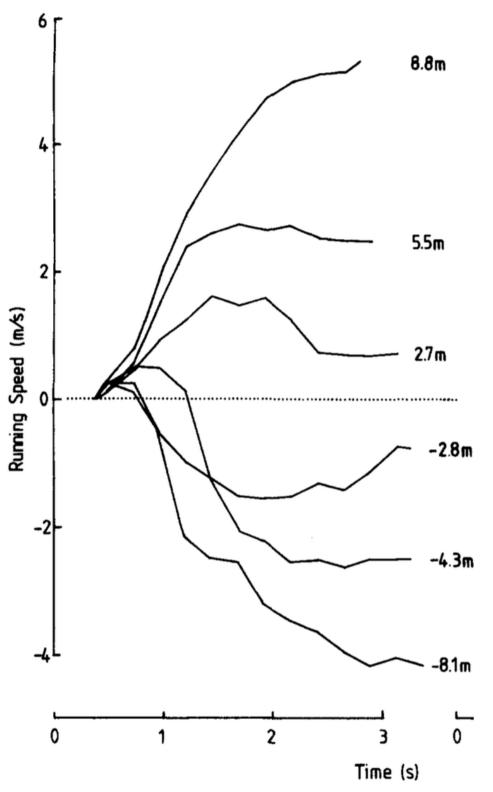
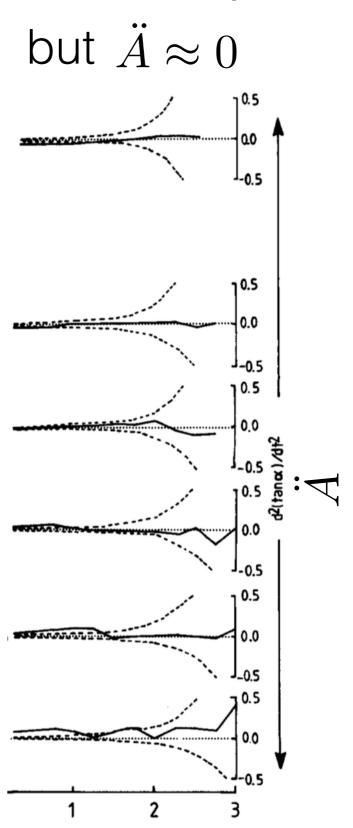


Figure 2. The experimental setup as viewed from above. A

experiment 1: 45deg at different speeds

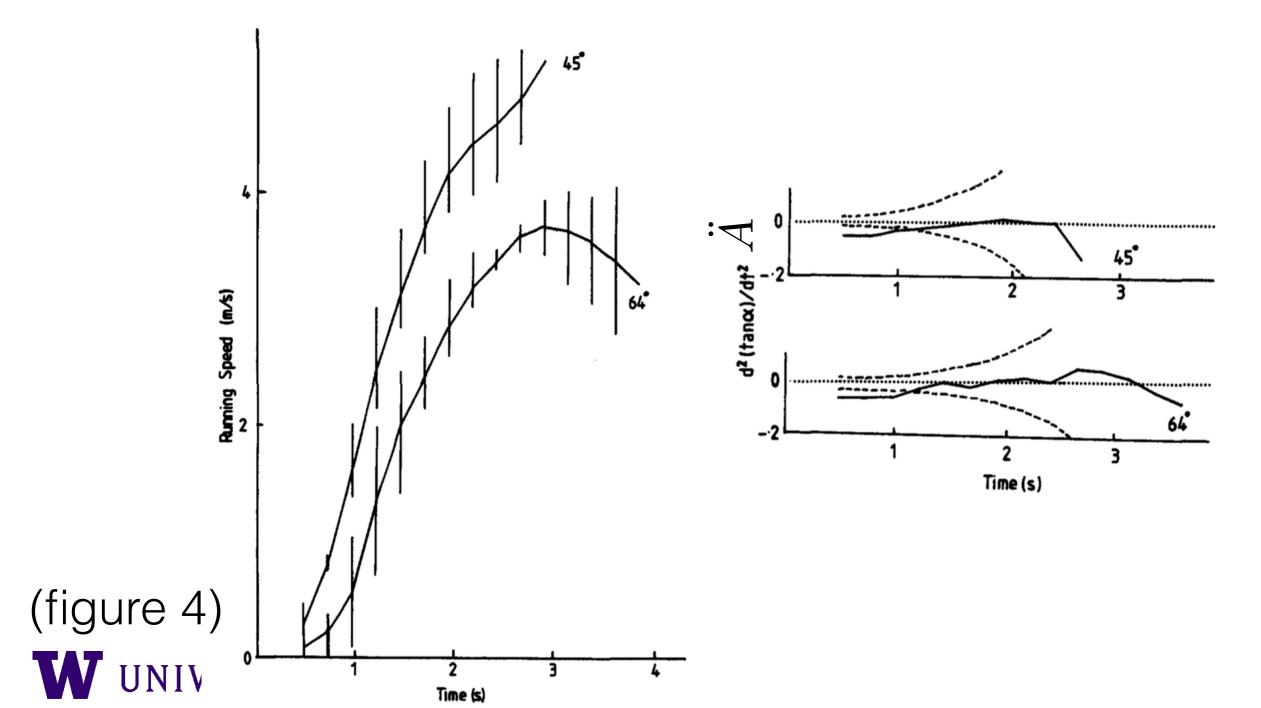
variable running speed





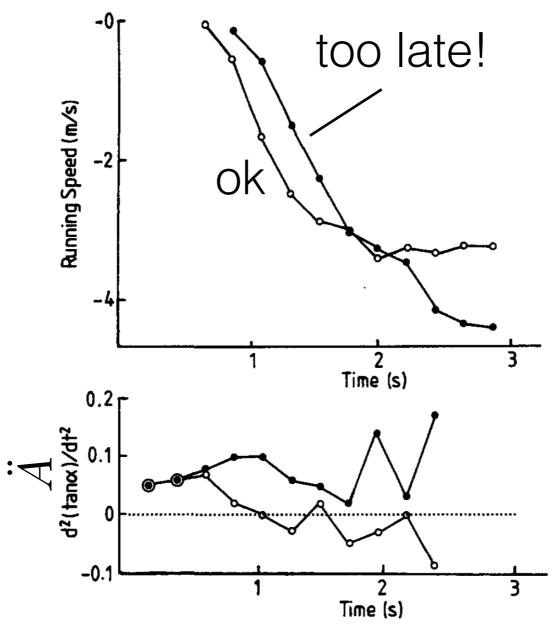
experiment 2: change launch angle (45 and 64 deg)

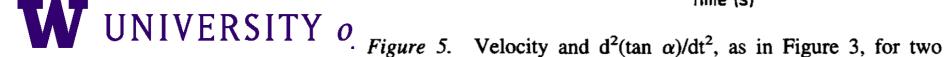
 result is runner runs slower if ball takes longer, rather than running full speed and arriving early



missing the ball

• happens if running too slowly so that \hat{A} never goes to zero

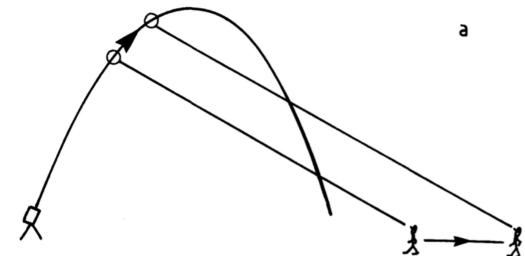




alternative hypotheses

tan(alpha)/A = constant

predictions:



observations:

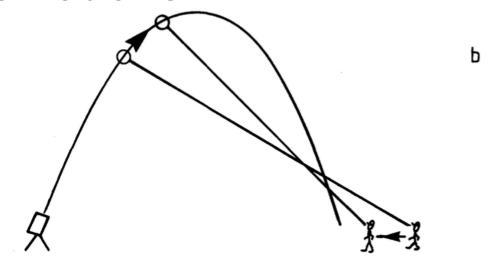
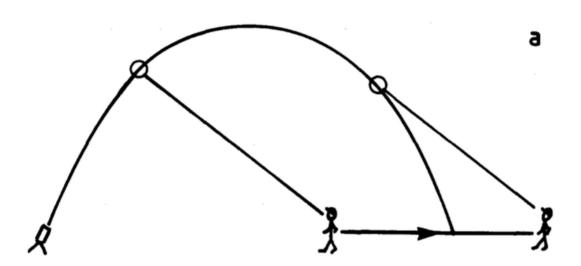


Figure 8. Two strategies for interception when the fielder should run forward. (a) Keeping the



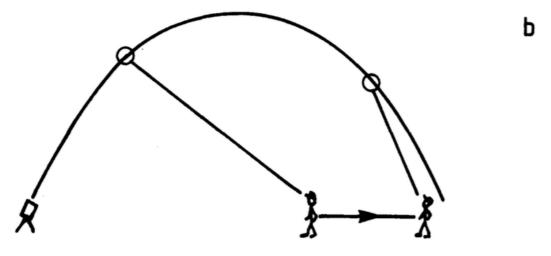


Figure 9. Two strategies for interception when the fielder is running backward. (a) Keeping the

alternative hypotheses

 $\ddot{\alpha} = 0$ 20 t (s)

rejected because lines not straight

summary

- fielders are not running at constant speed to ball
- consistently, they are running at the moment they intercept it
- they didn't use spare time to run to where the ball would fall
 - this suggests they don't know where that will be
- dynamic behavior suggests a simple feedback law

conclusion:

runner implements a *feedback* controller ("servo"): $dv/dt = K d^2tan\alpha/dt^2$

$$\dot{v} = -K\ddot{A}$$

Reminder for when you are presenting a paper

- In addition to presenting, you will also lead the discussion of the paper
- don't write a review
- Instead, make a blank post so you can read other reviews. Then, skim through the reviews and come prepared to bring up their questions and comments

discussion comments

- Is this really general? Can we learn more if we try extremely non-ballistic balls like waffle balls?
- calculating a second derivative is noisy
- "good players often stop and wait for the ball to land"
- great thing to test with a simulation!
- next question: how is this learned?