remarks on linear quadratic regulator

+ computing K requires solving “algebraic riccati equation”
- tricky to solve & requires numerical iteraton K = —R~'B'P
= best to use software from experts 0=PA+ATP - PBRIBTP+Q
ct.lgr (A,B,Q,R) or MATLAB 1gr (2, B, Q,R)

- LQR is a special case of general optimization problem: find u that minimizes
given cost function and satisfies constraints (e.g. max throttle). This can be used

to guide system to desired state/trajectory
- sketch for how LQR is solved:
- use pontryagin’s maximum principle (variational calculus)

- In special case of linear, time-invariant system, quadratic cost, and infinite
time horizon, result is that input is a linear function of state: u=-Kq
- for control far away from equilibrium (e.g. aggressive maneuvers), need full
nonlinear trajectory tracking

- common “engineering” approach is receding horizon control (a.k.a. “model
predictive control”): repeatedly calculate optimal u over a short horizon

- biology-inspired: explore the solution space, reward if success (reinforcement
learning). parameterize controller/“policy" with a neural network

WA/ UNIVERSITY of WASHINGTON 20



more remarks

- Full 3D flight control requires two separate, parallel 2D controllers.
Also required are coordinate rotations between inner and outer loops.

- See Fuller2019, “Four Wings: An Insect-Sized Aerial Robot With
Steering ability and payload capacity for autonomy”, Robotics and
Automation Letters (2019) on the course web page for one
approach.

. Simulating R = Rw'> in 3D leads to ill-formed R matrices because
of numerical inaccuracy. Better to parameterize R with Euler Angles or
guaternions

- Euler Angles: see Mellinger2012: “Trajectory generation and
control for precise aggressive maneuvers with quadrotors” Int. J.
Robot. Res. on course we page

- To compensate for steady-state disturbances, e.g. torque bias that we
must correct for, do integral action by adding a state z:

d |z| _ |Ax+ Bu| _ |Az + Bu
dt |zl | y—r | | Cx—1r |«—— integral of (output) error
u=-—-Kx— Kz
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the control task

g4 (desired state)

\ e, (error)
> system t tat
> controller > > > ¢ (system state)
| dynamics [x, y, z position,
— x, y, z velocity,
17) (System input) roll, pitch, yaw angles,
[thrust force, roll, pitch, yaw rates]
roll torque,
pitch torque]
q - —
: estimator (e sensors |-
(estimated state) —
y (system output)
“measurement”

[roll, pitch, yaw rates (gyro),
x-optic flow, y-optic flow (optic flow camera),
z-distance measurement (time of flight)]

estimator must reconstruct state vector from limited sensor
information (number of sensors is typically < number of states)

separation principle states that controller and estimator can be
designed independently
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Sensors Gyroscope: Bosch BMI088

Z., ," 5 <o _Qc ~—»
L /0, ¥
! [ gyroscope 5 i:,é
A 4 . .
time-of-flight ; principle: sense coriolis
laser & \ : . :
rangefinder | /% ootic flow forces using a vibrating
2] rf | sensor proof mass
Wi = W+ Ny
Optic flow sensor: Pixart PMW3901
= = Y AN STy - 7—_; i ™

- - — i TR L
¥ 3

e .
Lo L o

Time-of-flight laser rangefinder:
ST VL53L1

S A
i = R
..
"..\‘
1'3)

e L - ™ .0—‘

— ’../“

principle: measure speed
of motion of visual scenery
directly below to estimate
lateral velocity

principle: measure time

taken for laser light to reflect | R
¥ “noise @ m=w,——+n,

model for sensor:7,, = r+nz y
(will derive on board)
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State estimation for control

Usr disturbances d Sensor noise n

X4 e State U l u l vV ] l y
—— Y - — : b e - R
Feedback Process @

L —1 |==— Observer

Problem Setup
e Given a dynamical system with noise and uncertainty, estimate the state

T

r = Ax+ Bu+Gd T = a(Z,y,u) «—— estimator

y = Cz+n - Jim E(z-2) =0
— 00
 — expected value

e 7 is called the estimate of x

Remarks
e Several sources of uncertainty: noise, disturbances, process, initial condition
e Uncertainties are unknown, except through their effect on measured output
» First question: when is this even possible?
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Observability

Defn A dynamical system of the form
z = f(z,u)
y = h(z,u)

is observable if for any T'> 0 it is possible to determine the state of the system
x(T) through measurements of y(¢r) and u(¢) on the interval [0,T]

Remarks
e Observability must respect causality: only get to look at past measurements
 We have ignored noise, disturbances for now = estimate exact state

e Intuitive way to check observability:

o
y=_Czx
. — Az B CA
L= AT B y = Cz = CAz + CBu W, = | CA2
y=~Cz ij = CA%z + CABu + CBi s
- CAn—l
Thm Alinear system is observable if and only if the observability matrix W _is

full rank
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State estimation: observer

Given that a system is observable, how do we actually estimate the state?

e Key insight: if current estimate is correct, follow the dynamics of the system

o ekpe b= A Bt b - 0D — I

y=Cx N prediction (copy of dynamics)

e Modify the dynamics to correct for error based on a linear feedback term
e L is the observer gain matrix; determines how to adjust the state due to error

 Look at the error dynamics for ~ _ . _ = to determine how to choose L:

T =gx—x = Az+Bu—(AzZ + Bu+ LC(z — z)) = (A—LC)Z%

Thm If the pair (4, C) is observable (associated W, is full rank), then we can
place the eigenvalues of A4-LC arbitrarily through appropriate choice of L.
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How to choose gain L7

“Kalman Filter” formulation: given system

q = Aq+ Bu+Gd
y = Cqg+n
where dis process noise (“disturbance”), nis sensor noise.
: . . 1 _l<i)2
- d) = 2 \ oy
d and n are zero-mean white Gaussian noise (eg for scalar d, p(d) \/@e )

and E{dd"}=Qn=Q% >0 E{nn'} =Ry =Ry >0

If noise is “stationary” (not changing with time) then the Kalman
gain L minimizes expected squared error of the state estimate

q=Aq+ Bu+ Ly — Cq)

Remarks
L is also the solution to an algebraic Riccati equation
use ct.lge (A, B, G,QON,RN) or MATLAB 1ge (A, B, Q,R)

Can choose other L’s, but Kalman L minimizes error size
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INtuition

-+ Kalman Filter combines information from dynamics prediction
with information sensor measurements using a “bayesian update”

- multiply the probability density function (PDF) of the state
estimate by the PDF of the new measurement

1D case
Bayesian inference:
prediction from new PDF = prior PDF * measurement PDF
- (1 - 7
anamlcs model (“prior?”) o 62 (1~ Ho)
Mo S 0'3 + 012
‘ ) ) o> = 62— %
(', 0 )7 JCRL
new estimate
& (KF does this for n dimensions)
> K
& >
O

O
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remarks

matrices Qv and Rn are usually diagonal, meaning noise is not correlated

sensor noise matrix By can come from datasheet or can be estimated:

-, i,
On1 (2) A 1 (Ui — Yim)? Yim Is sensor’s measurement

Ry = 0 o9 VN1 Yi — Yim yi is ground truth measurement
- - = numpy.linalg.std (y.—y) if y'S are arrays of data

disturbance noise Qn is harder to measure. Perspective: is tuning knob
- large disturbance Qn = trust sensors more than prediction = large L

- small disturbance Qn = trust prediction more than sensors = small L

linear KF requires very little computation, just a few matrix multiply
operations
* rose to prominence on the Moon Lander in the 1960’s (!)
Important variants:
- sensors that do not update at equal intervals: use “information form” that
separates prediction from correction step, using different L for each sensor
- for nonlinear system, use extended KF (“EKF”) (see Murray, Optimization-
Based Control) or unscented KF (“UKF” ) (more computation needed)
- crazyflie uses an extended KF to enable more aggressive maneuvers
(Greif2017 on course website)
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-xample: med586_example_kalman_estimator.ipynb

A) Kalman Filter to estimate velocity from this dynamical system:

Velocity measurementis vi;; = v + n  (true value + noise)
>

drag = —bv
m T

B) Vary tuning knob Qn (magnitude of disturbance noise)

C) helicopter-based optic flow (must linearize at desired height z=zy)
Vim = —Qmz + n

e
I drag
Z
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compared to a low-pass filter, the Kalman Filter:

can estimate “hidden” but observable states

can perform sensor fusion between different sensors at
different update rates

can accommodate effect of known inputs

reduces estimate lag time, if the quantity you are interested in
behaves as a dynamical system

minimizes expected squared estimate error
but needs a model of dynamics

well-suited to a dynamical system such as an aircraft with a
good model (eg rigid body equations) and states that are
not directly measured by sensors (e.g. orientation)
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The separation principle

driving the output y

] R to the value r is another way

- Analysis: Again, let X = x — X denote the error in the state estimate. The
dynamics of the controlled system under this feedback are:
x = Ax + Bu = Ax — BKX — Bk,.r = Ax — BK(x — X) + Bk, r
= (A — BK)x + BKX + Bk,r

- Introduce a new augmented state: g = [x %]'. The dynamics of the
system defined by this state is:

[;f] - [(A —OBK) (A IiKLc)] [;] + [B(’)‘fr] r = Mq + Byr

The characteristic polynomial of M is:

Ay (s) = det(s] — A+ BK) det(sl — A+ LC)

®* If the system is observable and reachable, then the poles of (A — BK) and
(A — LC) can be set arbitrarily and independently

e |f Kis an LQR controller and L is a Kalman Filter, then is a “Linear
Quadratic Gaussian” (LQG) controller



