summary: robot dynamics, LQR

a linear quadratic regulator has the form of a state feedback controller with gain K:
u=—Kgq

it minimizes the quadratic cost function given by
@)
J = / (¢ Qg + u' Ru)dt
0

shifts the design problem from gain choices to weight choices

dynamics with pure vectors dynamics for simulation
>f = mvo > = mvo world coordinates
o /) ./ / ; body-attached
DT =Jw+w X Jw X7 = Jw t+w X Jw coordinates
- L /X
R = Rw orientation
p = v world coordinates

WA/ UNIVERSITY of WASHINGTON 28



remarks on linear quadratic regulator

+ computing K requires solving “algebraic riccati equation”
- tricky to solve & requires numerical iteraton K = —R~'B'P
= best to use software from experts 0=PA+ATP - PBRIBTP+Q
ct.lgr (A,B,Q,R) or MATLAB 1gr (2, B, Q,R)

- LQR is a special case of general optimization problem: find u that minimizes
given cost function and satisfies constraints (e.g. max throttle). This can be used

to guide system to desired state/trajectory
- sketch for how LQR is solved:
- use pontryagin’s maximum principle (variational calculus)

- In special case of linear, time-invariant system, quadratic cost, and infinite
time horizon, result is that input is a linear function of state: u=-Kq
- for control far away from equilibrium (e.g. aggressive maneuvers), need full
nonlinear trajectory tracking

- common “engineering” approach is receding horizon control (a.k.a. “model
predictive control”): repeatedly calculate optimal u over a short horizon

- biology-inspired: explore the solution space, reward if success (reinforcement
learning). parameterize controller/“policy" with a neural network

WA/ UNIVERSITY of WASHINGTON 29



