three ideas inspired by biology for how to improve robotics

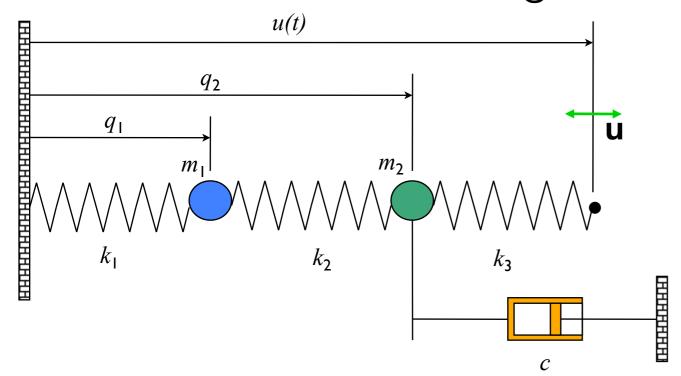
(the focus of this course)

 adaptation through evolution and learning fundamental engineeringprocesses used by biology"curse of dimensionality"

- 2. mechanical intelligence
 - the use of mechanics to reduce or eliminate the need for feedback control
- 3. parsimony
 - simple and efficient solutions

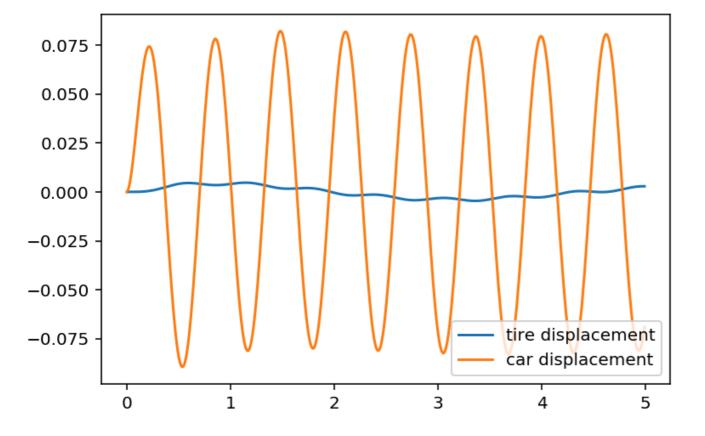
- "shortcut": look directly to biology for inspiration, combine with engineering knowledge
- ⇒ the approach emphasized in ME586 homework and projects

Simulating a state-space system



basic task: repeatedly calculate state update:

$$\boldsymbol{q}_{t+\Delta T} = \boldsymbol{q}_t + \Delta T \dot{\boldsymbol{q}}_t = \boldsymbol{q}_t + \Delta T \boldsymbol{f}(\boldsymbol{q})$$



Python simulation

```
import numpy as np
import matplotlib.pyplot as plt
k1 = k2 = k3 = m1 = c = 1
m2 = 0.1
dt = 0.01
time = np.arange(0, 5, dt)
q data = np.zeros((len(time), 4))
q = np.array((0, 0, 0, 0)) \leftarrow initial condition
                            ← dynamics function
def f(q, u):
     return np.array((
         q[2],
         q[3],
         -(k1+k2)/m1*q[0] + k2/m1*q[1],
         k2/m2*q[0] - (k2+k3)/
             m2*q[1] - c/m2*q[3] + k3/m2*u)
for idx, t in enumerate(time):
    u = np.cos(10*t)
                                  ← update step
    q = q + dt * f(q, u)
                                  ← store result
    q data[idx,:] = q
plt.plot(time, q data[:,0:2])
plt.legend(('car displacement (q1)',
            'tire displacement (q2)'))
```

general form of differential equations

State space form

$$rac{dx}{dt} = f(x,u)$$
 $rac{dx}{dt} = Ax + Bu$ $x \in \mathbb{R}^n, u \in \mathbb{R}^p$ $y = h(x,u)$ $y = Cx + Du$ $y \in \mathbb{R}^q$

General form

Linear system

•x = state; nth order

phase plots show 2D behavior

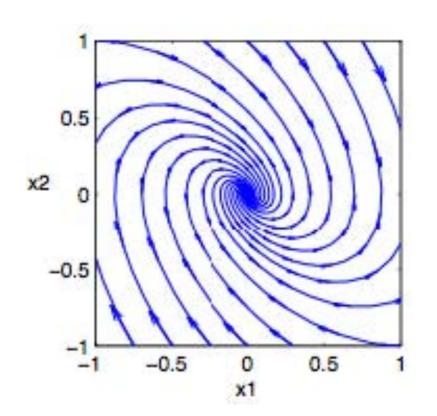
Phase plane plots show 2D dynamics as vector fields & stream functions

- $\dot{x} = f(x, u(x)) = F(x)$
- Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 - x_2 \end{bmatrix}$$

0.5 x2 0 -0.5

python: use 'streamplot' function in Matplotlib



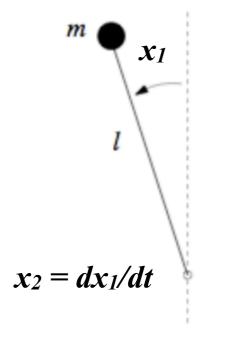
equilibrium points

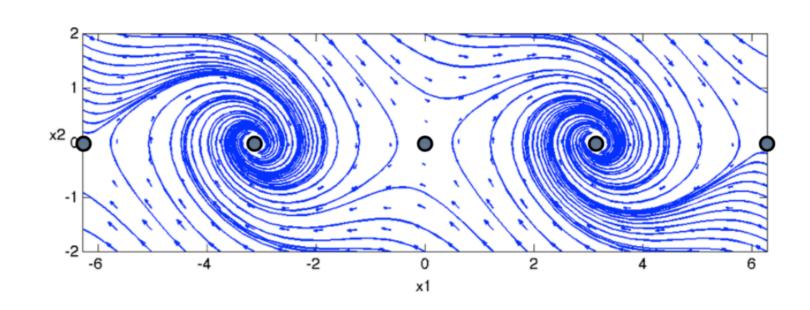
Equilibrium points represent stationary conditions for the dynamics

The *equilibria* of the system $\dot{x} = f(x)$ are the points x_e such that $f(x_e) = 0$.

Example:

$$\frac{dx}{dt} = \begin{bmatrix} x_2 \\ \sin x_1 - \gamma x_2 \end{bmatrix} \qquad \Rightarrow \qquad x_e = \begin{bmatrix} \pm n\pi \\ 0 \end{bmatrix}$$



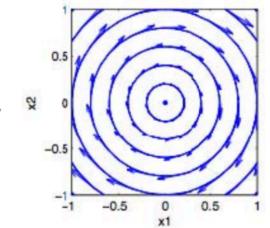


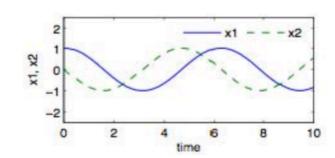
stability of equilibrium points

An equilibrium point is:

Stable if initial conditions that start near the equilibrium point, stay near

 Also called "stable in the sense of Lyapunov

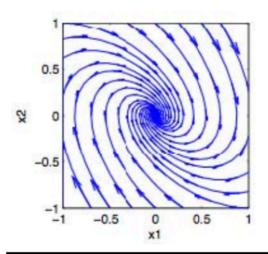


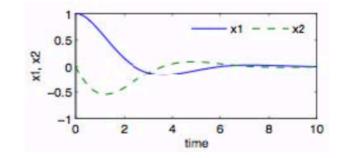


"stable" but not asymptotically stable

Asymptotically stable if all nearby initial conditions converge to the equilibrium point

Stable + converging

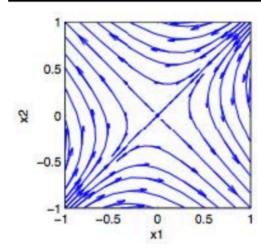


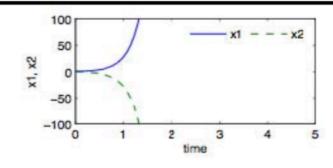


asymptotically stable

Unstable if some initial conditions diverge from the equilibrium point

 May still be some initial conditions that converge



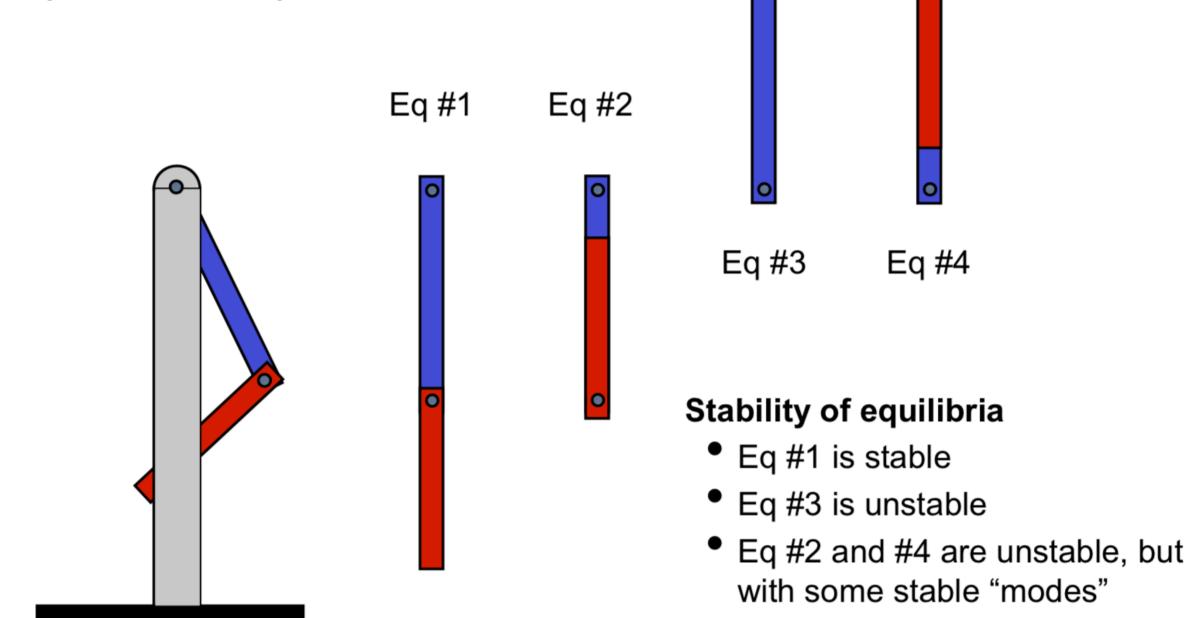


unstable

Example #1: Double Inverted Pendulum

Two series coupled pendula

- •States: pendulum angles (2), velocities (2)
- •Dynamics: F = ma (balance of forces)
- Dynamics are very nonlinear



Stability of linear systems $\dot{x} = Ax$

• Theorem: linear system is asymptotically stable if and only if all eigenvalues λ of A have negative real part.

Local stability of nonlinear systems $\dot{x} = F(x)$

Asymptotic stability of the linearization implies local asymptotic stability of equilibrium point

Linearization around equilibrium point captures "tangent" dynamics

$$\dot{x} = F(x_a) + \frac{\partial F}{\partial x}\Big|_{x_a} (x - x_a) + \text{higher order terms} \quad \xrightarrow{approx} \quad \begin{aligned} z &= x - x_a \\ \dot{z} &= Az \end{aligned}$$

- linearization is *stable* ⇒ nonlinear system *locally stable*
- linearization is *unstable* ⇒ nonlinear system *locally unstable*
- "degenerate case": if linearization is *stable* but not *asymptotically stable* \Rightarrow cannot tell whether nonlinear system is stable or not!

$$\dot{x} = \pm x^3 \quad \stackrel{linearize}{\longrightarrow} \quad \dot{x} = 0$$

- $\dot{x} = \pm x^3$ $\stackrel{linearize}{\longrightarrow}$ $\dot{x} = 0$ linearization is stable (but not asy stable) nonlinear system can be asy stable or unstable

Local linear approximation is valuable for control design:

- if dynamics are well-approximated by linearization near an equilibrium point, controller can ensure stability there (!)
- controller task: make the linearization stable

Linearization about an equilibrium point

$$\dot{x} = f(x, u) \qquad \dot{z} = Az + Bv$$

$$y = h(x, u) \qquad w = Cz + Dv$$

to "linearize" around $x = x_e$:

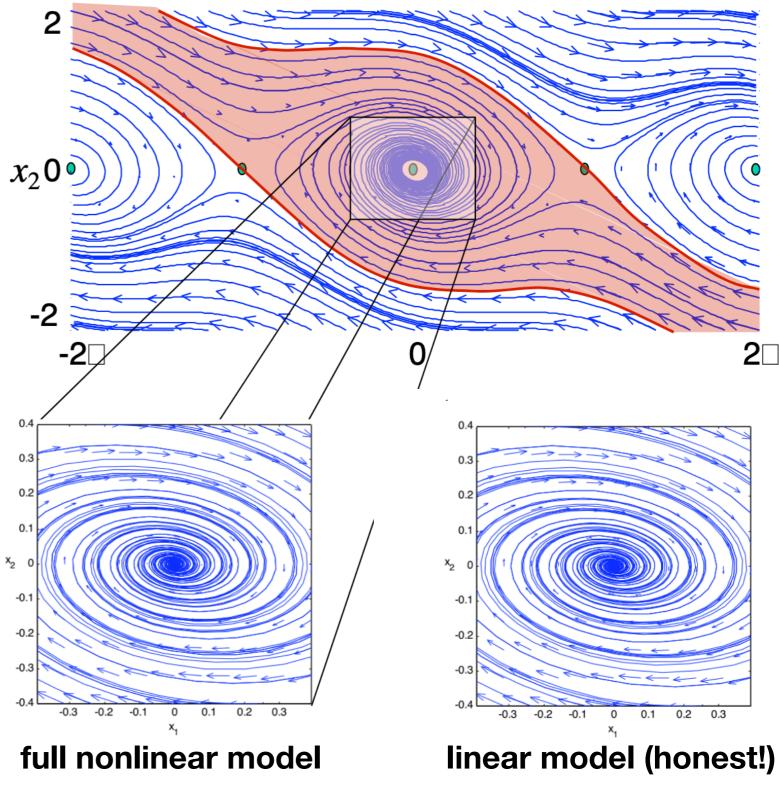
- 1. find x_e , u_e such that f = 0
- **2.** define $y_e = h(x_e, u_e)$ $z = x - x_e$ $v = u - u_e$ $w = y - y_e$

3. then
$$A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)} \qquad B = \frac{\partial f}{\partial u}\Big|_{(x_e, u_e)}$$

$$C = \frac{\partial h}{\partial x}\Big|_{(x_e, u_e)} \qquad D = \frac{\partial h}{\partial u}\Big|_{(x_e, u_e)}$$

Remarks

- In examples, this is often equivalent to small angle approximations, etc
- Only works near to equilibrium point
- use linearization to design controller



big idea: if combined linearized system + controller is stable ⇒ nonlinear system (incl control) is stable nearby

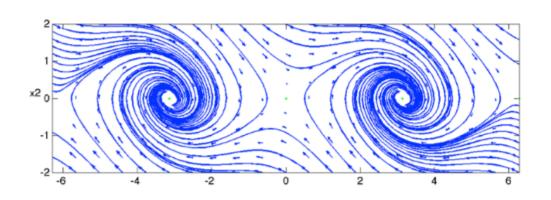
Jacobian linearization matrix

$$A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}\Big|_{(x_e, u_e)}$$

Example: Stability Analysis of Inverted Pendulum

System dynamics

$$\frac{dx}{dt} = \begin{bmatrix} x_2 \\ \sin x_1 - \gamma x_2 \end{bmatrix}$$
,



Upward equilibrium:

$$\theta = x_1 \ll 1 \implies \sin x_1 \approx x_1$$

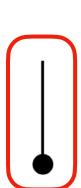
$$rac{dx}{dt} = egin{bmatrix} x_2 \ x_1 - \gamma x_2 \end{bmatrix} = egin{bmatrix} 0 & 1 \ 1 & -\gamma \end{bmatrix} x$$

• Eigenvalues:
$$-\frac{1}{2}\gamma \pm \frac{1}{2}\sqrt{4+\gamma^2}$$
 for $\gamma = 0.1$, $\lambda \approx (0.95, -1.05) \Rightarrow$ unstable

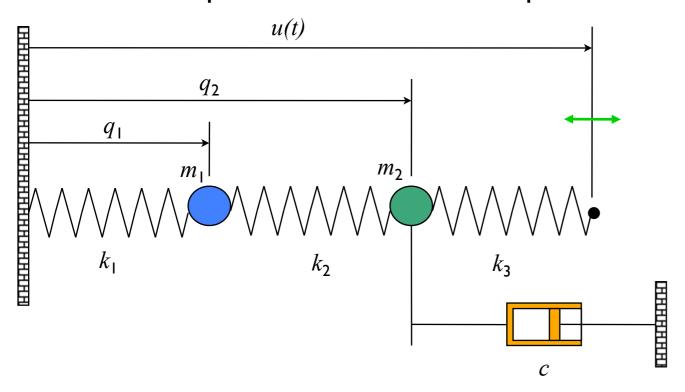
Downward equilibrium:

- Linearize around $x_1 = \pi + z_1$: $\sin(\pi + z_1) = -\sin z_1 \approx -z_1$
- Eigenvalues:

$$-\frac{1}{2}\gamma \pm \frac{1}{2}\sqrt{-4+\gamma^2}$$
 for $\gamma = 0.1$, $\lambda \approx (-0.05+i, -0.05-i) \implies$ stable



example 2: matrix representation of a linear system



Model: rigid body physics

- Sum of forces = mass * acceleration
- Hooke's law: $F = k(x x_{rest})$
- Viscous friction: F = c v

$$m_1 \ddot{q}_1 = k_2 (q_2 - q_1) - k_1 q_1$$

$$m_2 \ddot{q}_2 = k_3 (u - q_2) - k_2 (q_2 - q_1) - c \dot{q}_2$$

Matrix representation:

 $\dot{x} = Ax + Bu$

$$\begin{bmatrix} \frac{d}{dt} \begin{bmatrix} q_1 \\ q_2 \\ \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} \frac{\dot{q}_1}{\dot{q}_2} \\ \frac{k_2}{m} (q_2 - q_1) - \frac{k_1}{m} q_1 \\ \frac{k_3}{m} (u - q_2) - \frac{k_2}{m} (q_2 - q_1) - \frac{c}{m} \dot{q} \end{bmatrix}$$

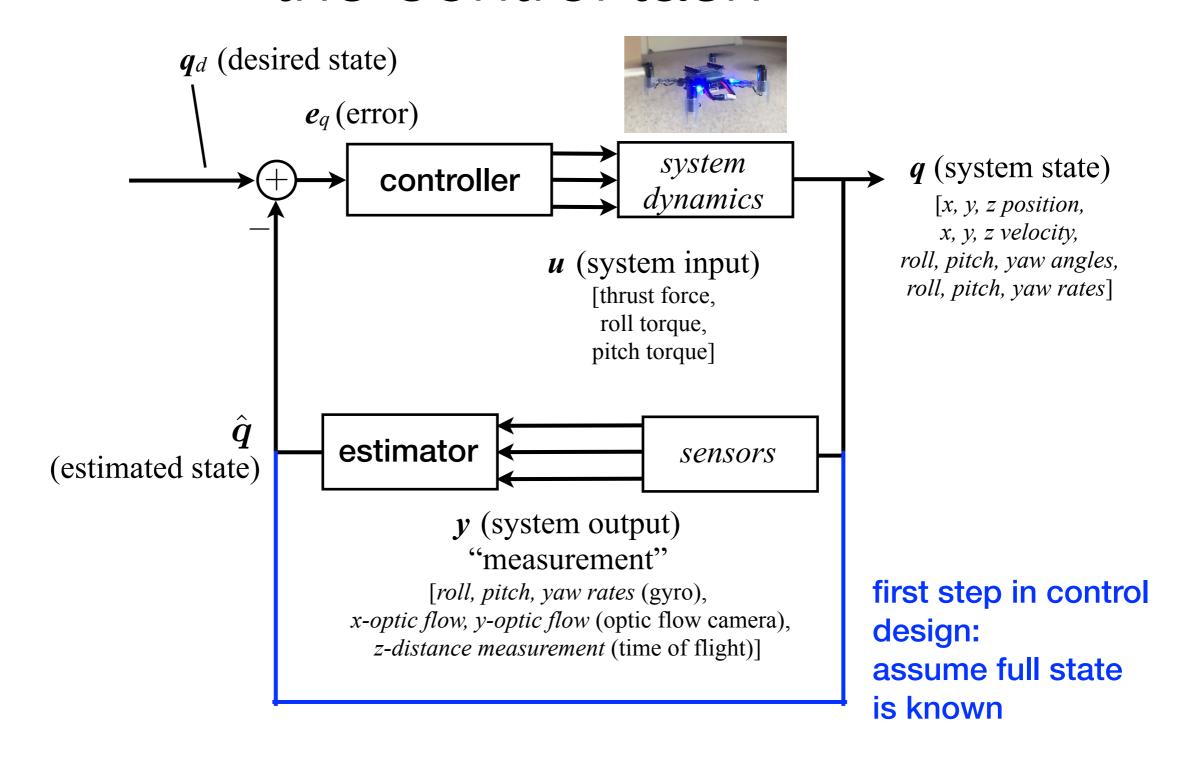
$$y = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$
 "State space form"

$$y = [1 \ 1 \ 0 \ 0]x = Cx$$

Upcoming/today

- Nonlinear dynamics and stability
- state feedback and "reachability/controllability"
- control and simulation of Newton-Euler Equations of motion
- LQR control

the control task



State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

$$\dot{x} = f(x, u)$$
 $x \in \mathbb{R}^n$, $x(0)$ given $y = h(x)$ $u \in \mathbb{R}$, $y \in \mathbb{R}$

Stability: stabilize the system around an equilibrium point

• Given equilibrium point $x_e \in \mathbb{R}^n$, find control "law" $u = \alpha(x)$ such that

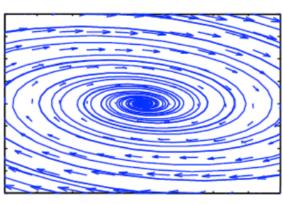
$$\lim_{t \to \infty} x(t) = x_e \text{ for all } x(0) \in \mathbb{R}^n$$

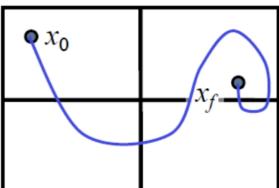
• Often choose x_e so that $y_e = h(x_e)$ has desired value r (constant)

Reachability: steer the system between two points

• Given $x_o, x_f \in \mathbb{R}^n$, find an input u(t) such that

$$\dot{x} = f(x, u(t))$$
 takes $x(t_0) = x_0 \rightarrow x(T) = x_f$





Tests for Reachability

$$\dot{x} = Ax + Bu$$
 $x \in \mathbb{R}^n$, $x(0)$ given $x \in \mathbb{R}^n$, $x(0)$ given $x(T) = e^{AT}x_0 + \int_{\tau=0}^T e^{A(T-\tau)}Bu(\tau)d\tau$

Thm A linear system is reachable if and only if the $n \times n$ reachability matrix

$$\begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$

is full rank.

Note: also called "controllability" matrix

Remarks

- Very simple test: control.ctrb(A,B) and check rank with numpy.linalg.matrix_rank()
- If this test is satisfied, we say "the pair (A,B) is reachable"

State space controller design for linear systems

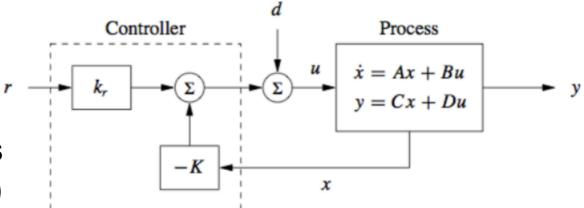
$$\dot{x}=Ax+Bu$$
 $x\in\mathbb{R}^n,\ x$ (0) given $y=Cx$ $u\in\mathbb{R},\ y\in\mathbb{R}$

$$x(T) = e^{AT}x_0 + \int_{\tau=0}^{T} e^{A(T-\tau)}Bu(\tau)d\tau$$

Goal: find a linear control law u = -Kx such that the closed loop system

$$\dot{x} = Ax + Bu = (A - BK)x$$

is stable at x = 0 (assumes x are coordinates relative to location of equilibrium)



- Stability based on eigenvalues \Rightarrow use K to make eigenvalues of (A BK) stable
- Can also link eigenvalues to performance (eg, initial condition response)
- Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (A - BK) can be set to arbitrary values if and only if the pair (A, B) is reachable.