three 1deas inspired by biology
for how to Improve robotics

(the focus of this course)

1. adaptation through @ fundamental engineering

evolution and learning processes used by biology
& “curse of dimensionality”

2. mechanical intelligence ‘

the use of mechanics to
reduce or eliminate the

need for feedback control S & “shortcut”: look directly to

_ biology for inspiration, combine
3. parsimony with engineering knowledge

: .. - N
Slmp!e and efficient = the approach emphasized in
solutions J

MES586 homework and projects

.
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basic task: repeatedly calculate state update:

m|| m2
ky ky ks

S

u

g AT =494 T AT(.]t =q,; + ATf(‘l)
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B e R

—— tire displacement
car displacement

3 4 5

Simulating a state-space system

Python simulation

import numpy as np

import matplotlib.pyplot as plt

kl = k2 =k3 =ml =¢c =1
m2 = 0.1
dt = 0.01

time = np.arange (0, 5, dt)
g data = np.zeros((len(time), 4))

g = np.array((0, 0, 0, 0)) + initial condition

def f (g, u): + dynamics function
return np.array ( (

qalz2],

al3],

- (k1+k2)/ml*gq[0] + k2/ml*qg[l],

k2/m2*q[0] - (k2+k3)/

m2*q[l] - c¢/m2*g[3] + k3/m2*u))

for idx, t in enumerate (time) :

u = np.cos (10*t)

qg =g+ dt * f£(q, u) + update step
q datalidx,:] = g + store result
g datal[:,0:2])

plt.legend(('car displacement (gl)',
'"tire displacement (g2)'))

plt.plot (time,
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general form of differential equations

State space form

¢%:3"(:::,1;) %=Az+Bu z€R", ucRP
q
y = h(z,u) y=Cz+ Du yekR
General form Linear system -x = state; nth order

phase plots show 2D behavior

Phase plane plots show 2D dynamics as vector fields & stream functions
* &= f(z,u(z)) = F(z)
® Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

*2 python: use ‘streamplot’
function in Matplotlib

0.5

l////.»‘_.\
/////..\

o
(8]




equilibrium points

Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system x = f(x) are the points x, such that f(x,) = 0.

Example:

& et = == [T

X2 =dxy/dt



stability of equmbrlum

An equilibrium point is:

Stable if initial conditions that start
near the equilibrium point, stay near

® Also called “stable in the sense
of Lyapunov

time

“stable” but not
asymptotically stable

1
| = = =D
0.5
of N~
-0.5 s

x2

x1,

Asymptotically stable if all nearby
initial conditions converge to the
equilibrium point

=

® Stable + converging

Unstable if some initial conditions 0s
diverge from the equilibrium point

® May still be some initial
conditions that converge -

unstable




Example #1: Double Inverted Pendulum

Two series coupled pendula
eStates: pendulum angles (2), velocities (2
*Dynamics: F = ma (balance of forces)

 Dynamics are very nonlinear

Eq #1 Eq #2

I Eq #3
Stability of equilibria
® Eq #1 is stable

® Eq #3 is unstable

® Eq #2 and #4 are unstable, but
with some stable “modes”




Stability of linear systems x = Ax

. Theorem: linear system is asymptotically stable if and only if all eigenvalues A
of A have negative real part.

L ocal stability of nonlinear systems X = F(x)

Asymptotic stability of the linearization implies /ocal asymptotic stability of
equilibrium point
® Linearization around equilibrium point captures “tangent” dynamics

0
2= —T
5= pipl = OF :

. (z — z,) + higher order termsa —— 5= Az
- linearization is stable = nonlinear system locally stable
- linearization is unstable = nonlinear system locally unstable

- “degenerate case’: if linearization is stable but not asymptotically stable = cannot
tell whether nonlinear system is stable or not!

. 3 linearize . * linearization is stable (but not asy stable)
* nonlinear system can be asy stable or unstable

Local linear approximation is valuable for control design:
- if dynamics are well-approximated by linearization near an equilibrium point,

controller can ensure stability there (!)
- controller task: make the linearization stable

WA/ UNIVERSITY of WASHINGTON 18



x=f(x,u) z=Az+ Bv

ﬁ

y =h(x,u) w=Cz + Dv
to “linearize” around x = x.:
1. find x,, u. such that /=0

2. define ), =h(x, ,u,)
Z=X-X, V=u—-u, w=y-y,
3. then

0 0
— i B = i
ax (x,.u,) au (x,,u,) , —>—> SN 03
oh oh 12— 02—
C - — D -_— — . y 7 : _&_\“ R ' ! \ 0.1p J /
ax ( X, ’ue) au ( X, ’ue) [ 1 1 ' \ “:A’,?-‘ﬂ'k_;: \ ; | ‘ % of({l ! ({l 7
Remarks ANN\NS—— NN
* In examples, this is often
equivalent to small angle -

03 -02 -01 0 0.1 02 03

approximations, etc . .
e Only works near to equili- full nonlinear model linear model (honest!)

brium point
* use linearization
to design controller

big idea: if combined linearized system + controller is stable
= nonlinear system (incl control) is stable nearby



Jacobilan linearization matrix

on . 9K
011 ox,
c')x(., ) ° -
0 fm O fm
| 8331 8:13n (e, 10)
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Example: Stability Analysis of Inverted Pendulum

System dynamics

~—— Upward equilibrium:
I =z, €1 => sinz, sz

U ol R i

® Eigenvalues: —Eq:l: 5\/4 +49%  fory=0.1, 1=(0.95, —1.05) — unstable

. ) Downward equilibrium:
® Linearize around x; =n + z;: sin(r+2,) = —sinz; & —3
® Eigenvalues:
—’ =2, —% | dz [ 3 ] [0 1]
—_— — — z
Z3 = T3 gt |~Aa—7Tx -1 —

_%7 4 %\/_4 Fa2  fory=0.1, 1=(-0.05+i, —0.05—i) — stable



example 2: matrix representation of a linear system

u(?)

q>

q

ki ka k3

>

Model: rigid body physics

® Sum of forces = mass *

acceleration
e Hooke’s law: F' = k(x — X,oq)

® Viscous friction: F =c v

q1
q2
ko k1
—(612 — 611) — —q1
m
(= 02) 2o 1)~ =
q2 m d2 — q1 Q_

“State space form”

migp = kz(CI2 — Cll) — k11
maoGs = k3(u — q2) — ka(q2 — q1) — cgo

HHHHHHHH]

Matrix representation:

x = Ax + Bu

0

0
ki + k,

m
k;

m

y=[1 1 0 0]x=Cx

k

m
ky, + k;

m

p—

0

07 o
1 0
0
Olx+]0 |u
k3
0 m.
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Upcoming/today

* Nonlinear dynamics and stability
e state feedback and “reachability/controllability”

e control and simulation of Newton-Euler Equations of
motion

e LQR control
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g4 (desired state)

\

A

q

(estimated state)

the control task

e, (error)

system
>@—> controller —> "
| dynamics

5 ¢ (system state)

u (system input)
[thrust force,
roll torque,

pitch torque]
_ <€
— estimator [ Sensors
v

y (system output)

“measurement”
[roll, pitch, yaw rates (gyro),
x-optic flow, y-optic flow (optic flow camera),
z-distance measurement (time of flight)]

WA/ UNIVERSITY of WASHINGTON 24

[x, y, z position,

x, y, z velocity,
roll, pitch, yaw angles,
roll, pitch, yaw rates|

first step in control
design:

assume full state
IS known



State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

= f(x,u) xr € R", 2(0) given
y = h(x) ueR, yeR

Stability: stabilize the system around an equilibrium point
e Given equilibrium point z. € R" | find control “law” u = a(x)
such that

lim x(t) = z. for all z(0) € R"

t— 00

e Often choose x. so that y. = /(x.) has desired value r (constant)

Reachability: steer the system between two points
e Given 7,.2r € R" find an input u(#) such that

r = f(x,u(t)) takes x(tg) = 2o — (1) = x5




Tests for Reachability

r = Ax + Bu r € R™, (0) given

T
x(T)=ex. + [ e’ ™ Butt)dt
y=~Cux uelR, yelR () ! lo )

Thm Alinear system is reachable if and only if the n x n reachability matrix

[B AB A2B ... An—lB]
Note: also called
Is full rank. “controllability” matrix

Remarks
[ Very Simple test : control.ctrb(a,B) and check rank with numpy. linalg.matrix rank()

e [f this test Is satisfied, we say “the pair (A,B) is reachable”



State space controller design for linear systems

r=Ar+ Bu € Rn, ZC(O) given

T
x(T)=ex + [ e ™ Bu(t)dt
y=Cu ueR, yeR &) ! {[0 2

Goal: find a linear control law #=-K x Controller Process
such that the closed loop system

r=Axr + Bu = (A — B[&')I

is stable at x = 0 (assumes x are coordinates é_ |
relative to location of equilibrium) '

e Stability based on eigenvalues = use K to make eigenvalues of (4 - BK) stable

e Can also link eigenvalues to performance (eg, initial condition response)
¢ Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (4 - BK) can be set to arbitrary values if and only if the
pair (4, B) is reachable.



