
ME 586: Biology-Inspired Robotics
University of Washington, Winter 2020, Prof. Sawyer B. Fuller

Problem Set 2

Goals: familiarize you with basic control of the Crazyflie, 2D flight dynamics and control, and control
by the optimal “LQR” Linear Quadratic Regulator.

Reading: Optimization-Based Control by Richard M. Murray, Chapter 2, section 2.4 and 2.5: Linear
Quadratic Regulators (the beginning of Chapter 2 provides a derivation).

Ia. Crazyflie helicopter software install. (∼4.3 GB download, ∼11 GB after install)

1. Download a zip file of the virtual machine with all necessary software installed from here:
https://drive.google.com/open?id=1rz8_6Xg42u4Sbezt9Q2i9nKvyS70X5gE.
Then unzip it to a convenient location (e.g. “Documents/ME586”).

2. (Windows) Download VMWare Workstation Player here:
https://www.vmware.com/products/workstation-player/workstation-player-evaluation.html
(Mac) You may need VMware Fusion ($96), or borrow a group-member’s Windows computer.

3. Open VMWare Workstation Player/Fusion and choose the “Open a Virtual Machine” option. Navigate
to the unzipped folder location and choose the file there.

4. The password to log into the virtual machine is “ok” without the quotes.

Ib. Crazyflie flight You will fly the Crazyflie in a pattern yourself and provide a plot of the estimated
trajectory. For this section you will work in groups to share the crazyflie, but you will write your own code
to control the crazyflie and plot your trajectory.

Setting up the Crazyflie After plugging in the usb radio and connecting it to the VM, follow the
instructions at

www.https://www.bitcraze.io/getting- started-with-the-crazyflie-2-0/ but use the long headers and also
attach the Flow deck underneath, matching the icons to determine orientation. Open the crazyflie client
program by opening a terminal in the VM and typing
cfclient

Connecting to the Crazyflie First turn on the crazyflie while it is sitting still on a flat surface. After
the beeps, you can move it to the ground in an open area. Then, open one terminal in the VM. Connect to
the crazyflie by typing
roslaunch rospy_crazyflie default.launch and wait until you see “Connected to crazyflie...”

Open another terminal and navigate to the examples folder in rospy_crazyflie using
cd catkin_ws/src/rospy_crazyflie/examples . Execute one of the example programs (takeoff_landing.py

or position_control.py) using
python file_name.py where file_name.py is the name of the file. NOTE: please only execute position_control.py

in a very large open area.

Editing the Files Now open the file you executed, you can go to the file explorer and open the file in
any text editor to edit it. Your VM comes with a default text editor, but feel free to download a text editor
of your choosing to work in.

You can see in position_control.py that we can give the crazyflie a few different commands, such as
forward, back, left, and right. You can view other commands by navigating to the folder
catkin_ws/src/rospy_crazyflie/src/rospy_crazyflie/motion_commands and viewing the content of the
files in there. We will explore this code during lecture.
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Logging and plotting the trajectory The crazyflie automatically logs many different variables. You
can view these variables by opening the crazyflie client, and going to settings/logging configurations. The
estimated position of the crazyflie is given in the variable stateEstimate > x,y, and z. You can see that x,y,
and z are stored as floats.

Now navigate to the examples folder again and examine eag.py. This file is a sample to show how to
log variables. If you wanted to access the stateEstimate variables in your code, you can change "eag" to
"stateEstimate" and "eag.eag" to "stateEstimate.x", and add in 2 more list items to "variables" to include
"stateEstimate.y" and "stateEstimate.z".

In the callback function (which is called every time the crazyflie logs a new value), you can choose to
write the values to a file rather than printing the values to the terminal. After writing the values to a file,
write a new python script which reads the file and plots the trajectory.

To submit: Pick a few of these motion commands to execute in sequence, execute them on the
crazyflie, making it fly in a trajectory of your choosing, and then submit a plot of the resulting trajectory as
a .png file using the python command matplotlib.savefig(’myfigname.png’)

II. PD control of flight dynamics in 2D The idea of this exercise is to become familiar with controlling
the 2D flight dynamics of a hovering aircraft like the crazyflie helicopter. Skeleton code that simulates the
dynamics of the robot has been implemented in a Jupyter notebook on the software_examples folder on the
course website called me586_2d_crazyflie_simulator_PD.ipynb. It implements a planar, 2D simulation of
the full 3D dynamics of a hovering aircraft, which follow the Newton-Euler equations of motion

Σf = mv̇

Στ ′ = Jω̇′ + ω′ × Jω′

Ṙ = Rω′×

ṗ = v

where f is any force acting on the vehicle, τ ′ is any torque acting on the vehicle, v is the velocity and p is
the position of the center of mass of the robot in world coordinates, ω′ is the angular velocity of the robot, J
is the vehicle’s moment of inertia, and R is the rotation matrix that relates vectors given in body-attached
coordinates to world coordinates. For any vector v expressed in world coordinates, v′ is the same vector
expressed in body-attached coordinates. They are related by v = Rv′. (Using the special property of rotation
matrices that R−1 = RT , we can also go in the other direction: v′ = RTv). The quantity ω′× is a 3×3
matrix that performs the cross product operation ω′×.

Figure 1: PD control of lateral dynamics using nested loops: a fast inner loop regulates attitude; a slower
outer loop regulates lateral position. A separate loop (not shown) regulates altitude.

The simulation models these equations in a two-dimensional plane by reducing to the following equations
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Σf =

[
0

−mg

]
+ R

[
0
fz

]
= mv̇

Στ y = τy = (Jω̇′ + ω′ × Jω′)y

θ̇y = ωy

ṗ = v

R =

[
cos θy sin θy
− sin θy cos θy

]
where fz is the thrust force from the rotors, τy is the control torque, v = [ẋ, ż]T , ω′ = [0, ωy, 0]T , and
p = [x, z]T .

In me586_2d_crazyflie_simulator_PD.ipynb, you are to implement one type of control in the form of
nested PD (proportional-derivative) control loops (Figure 1 above). In the cell entitled “controllers” hand-tune
Kp and Kd (proportional and derivative) gains, respectively, for each controller. Remarks:

• In each of the three PD controller functions, attitude_controller, lateral_controller, and altitude_controller,
the states you will need to implement that controller have already been extracted from the state vector
(e.g. x-position and x-velocity for the lateral controller). Typically, a PD controller acts on the position
(or angle) error but only acts on the absolute velocity according to u = Kp(xd − x) −Kdẋ where x is
the variable you are controlling.

• A reasonable strategy is to start by finding the gains of the inner-most loop, the attitude loop. Adjust its
gains until you have good attitude performance, leaving the other controllers to output zero. For each
controller, first find a proportional gain that isn’t so high that you see erratic behavior like tumbling,
but isn’t so low that it doesn’t respond. A good value results in oscillations around your desired position
(you can think of proportional control as being “spring-like”).

• Then, to damp out the oscillations, add a derivative term, whose purpose is to add damping. Repeat
for your altitude and lateral controllers.

III. Linearization of flight dynamics Now we will create a linear state-space formulation of the dy-
namics that we can use for LQR controller design.

1. Consider a reduced system in which the position is not part of the state, that is, q = [θy, ωy, ẋ, ż]
T .

Express these two-dimensional planar dynamics as a nonlinear differential equation in the form q̇ =
f(q,u), where u = [fz, τy]T . The term (Jω̇′ + ω′ × Jω′)y is the y-component of the quantity in the
parentheses. Please write out your answer component-wise, so that on each line of your answer you
explicitly state how each state is changing with time, e.g. θ̇y = ...; ω̇y = ... etc. in the original order of
states.
Tip: you can write Latex-style formulas in a Jupyter notebook “markdown” cell (i.e. a text cell) by
surrounding your equation with $s as follows: $ <equation> $.

2. Assuming that thrust perfectly balances out gravity (fz = mg) and that the inertia matrix is diagonal
(J = diag[Jxx, Jyy, Jzz]), find the equilibrium point (qe, ue) corresponding to upright hover for the
reduced dynamics. Then, linearize the dynamics about that point and express the system as a state-
space linear system ˙̃q = Aq̃ +Bũ, where q̃ = q − qe and ũ = u− ue.

3. Now consider the full 2D system that includes position, parameterized by the state vector q = [θy, ωy, x, ẋ, z, ż]
T .

This system has an infinitude of equilibria, one for all possible x- and z positions. The linearization for
the full 2D system for all of these positions is identical; show that it is given by

A =


0 1 0 0 0 0
0 0 0 0 0 0
0 0 0 1 0 0
g 0 0 0 0 0
0 0 0 0 0 1
0 0 0 0 0 0

 , B =


0 0
0 1/Jyy
0 0
0 0
0 0

1/m 0


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IV. LQR control In a Linear Quadratic Regulator, the entire state is used for feedback. We will use the
linearization derived above to for control. In the subsequent problem set, we will use it for state estimation.
An LQR regulator has the form of a state feedback controller

u = −Kq,

where u is the control input that minimizes the quadratic cost

J =

∫ ∞
0

(qTQq + uTRu)dt.

We will use an LQR controller to stabilize the full, nonlinear dynamics of the system. A python notebook
is provided, me586_2d_crazyflie_simulator_LQR.ipynb that has skeleton code you can use for analysis
and simulation.

1. Using the python notebook provided, add a cell that shows that the full linearized system (III. part 3
above) is controllable by performing the reachability (also known as “controllability”) test.

2. Finish implementation of the LQR controller by filling in missing elements (denoted anywhere there is
a comment with three ###’s.)

3. Now explore how changing weights affects the behavior of the system, increasing or decreasing weights
until you get reasonable performance. Typically we know control effort costs and leave those fixed—they
are the amount of energy the motors consume—and our state costs are the “knob” we tune. (Hint: start
by incrementing weights by factors of 10). Provide a notebook with the plots that show the following
effects (you may need to copy and paste code to run simulations with different LQR weights) and briefly
(in a sentence or two) explain:

(a) What happens when your x weight is much higher than your z-weight?

(b) What happens when you have a high velocity weight relative to position weight?
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