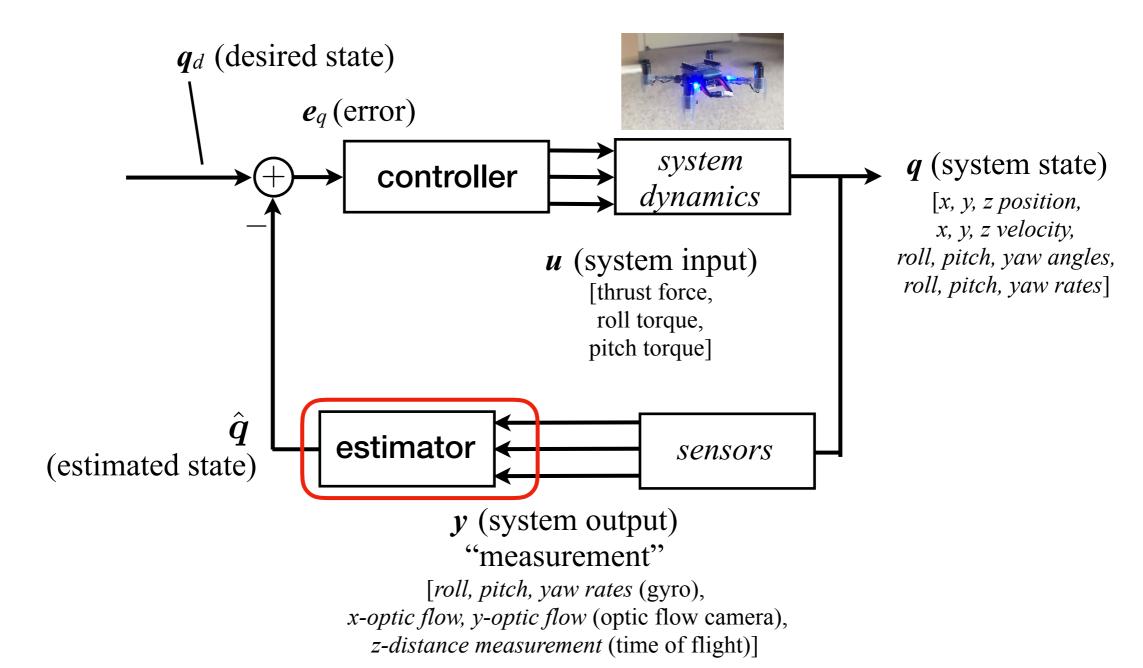
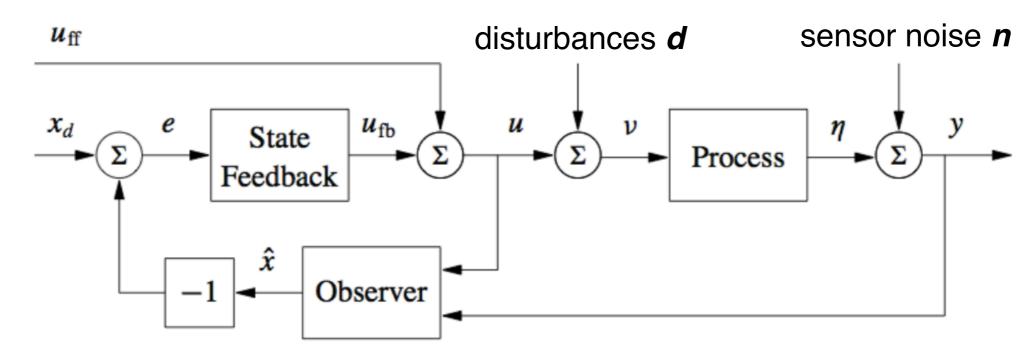
the control task



- estimator must reconstruct state vector from limited sensor information (number of sensors is typically < number of states)
- separation principle states that controller and estimator can be designed independently

State estimation for control



Problem Setup

Given a dynamical system with noise and uncertainty, estimate the state

$$\dot{x}=Ax+Bu+Gd$$
 $\dot{\hat{x}}=\alpha(\hat{x},y,u)$ — estimator $y=Cx+n$ $\lim_{t\to\infty}E(x-\hat{x})=0$ expected value

• \hat{x} is called the *estimate* of x

Remarks

- Several sources of uncertainty: noise, disturbances, process, initial condition
- Uncertainties are unknown, except through their effect on measured output
- First question: when is this even possible?

Observability

Defn A dynamical system of the form

$$\dot{x} = f(x, u)$$
$$y = h(x, u)$$

is *observable* if for any T > 0 it is possible to determine the state of the system x(T) through measurements of y(t) and u(t) on the interval [0,T]

Remarks

- Observability must respect causality: only get to look at past measurements
- We have ignored noise, disturbances for now ⇒ estimate exact state
- Intuitive way to check observability:

$$\dot{x} = Ax + Bu
\dot{y} = C\dot{x}
\dot{y} = C\dot{x} = CAx + CBu
\dot{y} = CA^{2}x + CABu + CB\dot{u}$$

$$\vdots
CA
CA^{2}
\vdots
CA^{n-1}$$

Thm A linear system is observable if and only if the observability matrix W_o is full rank

State estimation: observer

Given that a system is observable, how do we actually estimate the state?

• Key insight: if current estimate is correct, follow the dynamics of the system

$$\dot{x} = Ax + Bu$$
 $\dot{\hat{x}} = A\hat{x} + Bu + L(y - C\hat{x})$ correction (based on output error) $y = Cx$ prediction (copy of dynamics)

- Modify the dynamics to correct for error based on a linear feedback term
- L is the observer gain matrix; determines how to adjust the state due to error
- Look at the error dynamics for $\tilde{x} = x \hat{x}$ to determine how to choose L:

$$\dot{\tilde{x}} = \dot{x} - \dot{\hat{x}} = Ax + Bu - (A\hat{x} + Bu + LC(x - \hat{x})) = (A - LC)\tilde{x}$$

Thm If the pair (A, C) is observable (associated W_o is full rank), then we can place the eigenvalues of A-LC arbitrarily through appropriate choice of L.

How to choose gain L?

"Kalman Filter" formulation: given system

$$\dot{q} = Aq + Bu + Gd$$

 $y = Cq + n$

where *d* is process noise ("disturbance"), *n* is sensor noise.

d and \boldsymbol{n} are zero-mean white Gaussian noise (eg for scalar \boldsymbol{d} , $p(d) = \frac{1}{\sqrt{2\pi\sigma_d^2}}e^{-\frac{1}{2}\left(\frac{d}{\sigma_d}\right)^2}$) and $E\{\boldsymbol{d}\boldsymbol{d}^T\} = Q_N = Q_N^T \geq 0$ $E\{\boldsymbol{n}\boldsymbol{n}^T\} = R_N = R_N^T > 0$

 if noise is "stationary" (not changing with time) then the Kalman gain L minimizes expected squared error of the state estimate

$$\hat{\boldsymbol{q}} = A\hat{\boldsymbol{q}} + B\boldsymbol{u} + L(\boldsymbol{y} - C\hat{\boldsymbol{q}})$$

Remarks

- L is also the solution to an algebraic Riccati equation
 - use lqe(A,B,G,QN,RN) or MATLAB lqe(A,B,Q,R)
- Can choose other L's, but Kalman L minimizes error noise

intuition

- Kalman Filter combines information from dynamics prediction with information sensor measurements using a "bayesian update"
 - multiply the probability density function (PDF) of the state estimate by the PDF of the new measurement

1D case

prediction from

dynamics model ("prior")

new measurement

new estimate

Bayesian inference: new PDF = prior PDF * measurement PDF

$$\mu' = \mu_0 + \frac{\sigma_0^2(\mu_1 - \mu_0)}{\sigma_0^2 + \sigma_1^2}$$
$$\sigma'^2 = \sigma_0^2 - \frac{\sigma_0^4}{\sigma_0^2 + \sigma_1^2}$$

(KF does this for *n* dimensions)

remarks

- matrices Q_N and R_N are usually diagonal, meaning noise is not correlated
- sensor noise matrix R_N can come from datasheet or can be estimated:

$$R_N = \begin{bmatrix} \sigma_{n1}^2 & 0 & \cdots \\ 0 & \sigma_{n2}^2 & \\ \vdots & \ddots \end{bmatrix} \quad \sigma_n = \sqrt{\frac{1}{N-1} \Sigma_i (y_i - y_{i,m})^2} \quad \text{$y_{i,m}$ is sensor's measurement} \\ \text{\vdots} \quad \text{\vdots} \quad$$

- disturbance noise Q_N is harder to measure. Perspective: is tuning knob
 - large disturbance $Q_N \Rightarrow$ trust sensors more than prediction \Rightarrow large L
 - small disturbance $Q_N \Rightarrow$ trust prediction more than sensors \Rightarrow small L
- linear KF requires very little computation, just a few matrix multiply operations
 - rose to prominence on the Moon Lander in the 1960's (!)
- important variants:
 - sensors that do not update at equal intervals: use "information form" that separates prediction from correction step, using different *L* for each sensor
 - for nonlinear system, use extended KF ("EKF") (see Murray, Optimization-Based Control) or unscented KF ("UKF") (more computation needed)
 - crazyflie uses an extended KF to enable more aggressive maneuvers (Greif2017 on course website)

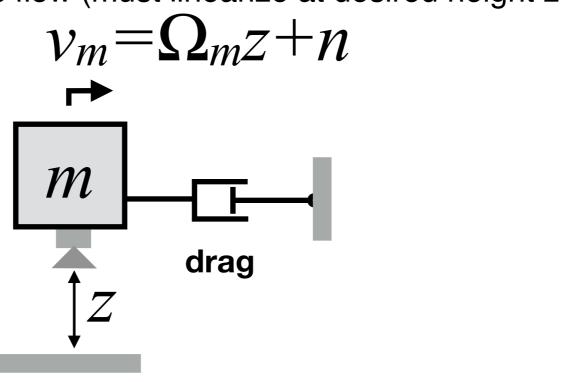
Example: me586_example_kalman_estimator.ipynb

A) Kalman Filter to estimate velocity from this dynamical system:

$$v_m = v + n$$
 (vel measurement = true value + noise)

$$m = v + n$$

- B) Vary tuning knob Q_N (magnitude of disturbance noise)
- C) helicopter-based optic flow (must linearize at desired height $z=z_d$)



compared to a low-pass filter, the Kalman Filter:

- can estimate "hidden" but observable states
- can perform sensor fusion between different sensors at different update rates
- can accommodate effect of known inputs
- reduces estimate lag time, if the quantity you are interested in behaves as a dynamical system
- minimizes expected squared estimate error
- but needs a model of dynamics

well-suited to a dynamical system such as an aircraft with a good model (eg N-E equations) and states that are not directly measured by sensors (e.g. orientation)

The separation principle

driving the output y to the value r is another way Feedback the estimated state: $u=-K\hat{x}+k_rr$ to do trajectory tracking

• Analysis: Again, let $\tilde{x} = x - \hat{x}$ denote the error in the state estimate. The dynamics of the controlled system under this feedback are:

$$\dot{x} = Ax + Bu = Ax - BK\hat{x} - Bk_r r = Ax - BK(x - \tilde{x}) + Bk_r r$$
$$= (A - BK)x + BK\tilde{x} + Bk_r r$$

- Introduce a new *augmented* state: $q = [x \ \tilde{x}]^T$. The dynamics of the system defined by this state is:

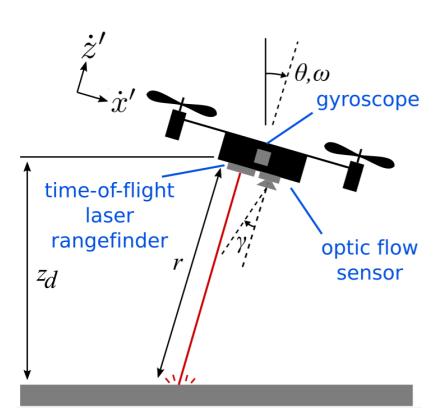
$$\begin{bmatrix} \dot{x} \\ \dot{\tilde{x}} \end{bmatrix} = \begin{bmatrix} (A - BK) & BK \\ 0 & (A - LC) \end{bmatrix} \begin{bmatrix} x \\ \tilde{x} \end{bmatrix} + \begin{bmatrix} Bk_r \\ 0 \end{bmatrix} r \equiv Mq + B_M r$$

The characteristic polynomial of *M* is:

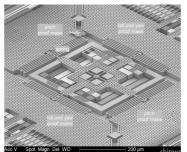
$$\lambda_M(s) = \det(sI - A + BK) \det(sI - A + LC)$$

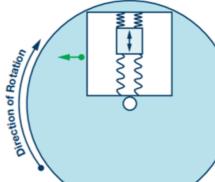
- If the system is *observable* and *reachable*, then the poles of (A BK) and (A LC) can be set *arbitrarily* and *independently*
- If K is an LQR controller and L is a Kalman Filter, then is a "Linear Quadratic Gaussian" (LQG) controller

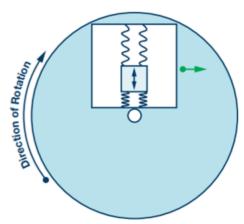
sensors



Gyroscope: Bosch BMI088



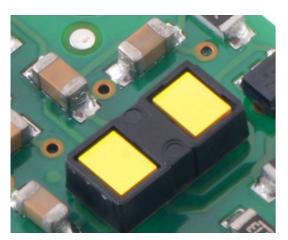




principle: sense coriolis forces using a rotating, vibrating proof mass

$$\omega_m = \omega + n_g$$

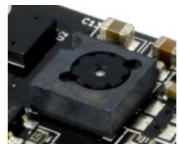
Time-of-flight laser rangefinder: ST VL53L1



principle: measure time taken for laser light to reflect

model for sensor: $r_m = r + n_t^{\mu}$

Optic flow sensor: Pixart PMW3901



principle: measure speed of motion of visual scenery directly below to estimate lateral velocity

$$\Omega_m = \Omega + n_o = -\omega + \frac{1}{r}(\dot{x}'\cos\gamma - \dot{z}'\sin\gamma) + n_o$$

(derive on board)