summary: robot dynamics, LQR

a linear quadratic regulator has the form of a state feedback controller with gain K: $oldsymbol{u} = -Koldsymbol{q}$

it minimizes the quadratic cost function given by

$$J = \int_0^\infty (\boldsymbol{q}^T Q \boldsymbol{q} + \boldsymbol{u}^T R \boldsymbol{u}) dt$$

shifts the design problem from gain choices to weight choices

dynamics with pure vectors

dynamics for simulation

$$\begin{split} \Sigma m{f} &= m \dot{m{v}} & \Sigma m{f} &= m \dot{m{v}} & ext{world coordinates} \ \Sigma m{ au} &= \mathbf{J} \dot{m{\omega}} + m{\omega} imes \mathbf{J} m{\omega} & \mathbf{D} \mathbf{v}' &= \mathbf{J} \dot{m{\omega}}' + m{\omega}' imes \mathbf{J} m{\omega}' & \mathbf{body-attached} \ ext{coordinates} & \mathbf{k} &= \mathbf{R} m{\omega}'^{ imes} & ext{orientation} \ \dot{m{p}} &= m{v} & ext{world coordinates} \end{split}$$

W UNIVERSITY of WASHINGTON 1

remarks on linear quadratic regulator

- computing K requires solving "algebraic riccati equation"
 - tricky to solve & requires numerical iteration $K = -R^{-1}B^T P$ \Rightarrow best to use software from experts $0 = PA + A^T P - PBR^{-1}B^T P + Q$

control.lqr(A, B, Q, R) or MATLAB lqr(A, B, Q, R)

- LQR is a special case of general optimization problem: find *u* that minimizes given cost function and satisfies constraints (e.g. max throttle). This can be used to guide system to desired state/trajectory
- sketch for how LQR is solved:
 - use pontryagin's maximum principle (variational calculus)
 - in special case of linear, time-invariant system, quadratic cost, and infinite time horizon, result is that input is a linear function of state: u = -Kq
- for control far away from equilibrium (e.g. aggressive maneuvers), need full nonlinear trajectory tracking
 - common "engineering" approach is receding horizon control (a.k.a. "model predictive control"): repeatedly calculate optimal *u* over a short horizon
 - biology-inspired: explore the solution space, reward if success (reinforcement ٠ learning). parameterize controller/"policy" with a neural network

W UNIVERSITY of WASHINGTON 2

more remarks

- Full 3D flight control requires two separate, parallel 2D controllers.
 Also required are coordinate rotations between inner and outer loops.
 - See Fuller2019, "Four Wings: An Insect-Sized Aerial Robot With Steering ability and payload capacity for autonomy", *Robotics and Automation Letters* (2019) on the course web page for one approach.
- Simulating $\dot{\mathbf{R}} = \mathbf{R} \omega'^{\times}$ in 3D leads to ill-formed *R* matrices because of numerical inaccuracy. Better to parameterize *R* with Euler Angles or quaternions
 - Euler Angles: see Mellinger2012: "Trajectory generation and control for precise aggressive maneuvers with quadrotors" *Int. J. Robot. Res.* on course we page
- To compensate for steady-state disturbances, e.g. torque bias that we must correct for, can do *integral action* by adding a state *z*:

$$\frac{d}{dt} \begin{bmatrix} x \\ z \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ y - r \end{bmatrix} = \begin{bmatrix} Ax + Bu \\ Cx - r \end{bmatrix} \longleftarrow \text{ integral of (output) error}$$
$$u = -Kx - K_i z$$
UNIVERSITY of WASHINGTON 3

the control task

- estimator must reconstruct state vector from limited sensor information (number of sensors is typically < number of states)
- separation principe states that controller and estimator can be designed independently

W UNIVERSITY of WASHINGTON 4