Flight control of hovering aircraft

Prof. Sawyer B. Fuller

ME 586: Biology-inspired robotics

Project-based portion of this course

- you will work with the crazyflie helicopter as part of two homework problem sets
 - objectives: learn basics of robotics and drone control
- optionally, you may use this helicopter as part of your term project
- Crazyflie specs:
 - ~30 g, ~4 minute flight time
 - communicates in real-time over bluetooth to laptop
 - sensor suite gives information needed to stabilize and control flight
 - open-source control software

example crazyflie project: odor source localization

Odor Localization

The control task we will cover

model-based or model-free

model-based control for basic stability

basics: actuation for hovering

honeybee

single-rotor helicopter

robot flies e.g. **UW Robofly**

four-rotor aircraft "quad-rotors"

typically, lateral thrust is not directly actuated

yaw torque pitch torque thrust force

roll torque

W UNIVERSITY of WASHINGTON 5

lateral actuation by tilting

lateral acceleration

$$\dot{v}_x = rac{1}{m} mg \sin \theta = g \sin \theta$$
 $pprox g \theta$ for small θ

"helicopter-like" lateral control

quad-rotor actuation

actuation with two wings

 two rotors spin one direction and two in the other direction

 vary angle and amplitude of flapping wings insight into flight control: One approach is nested loops (problem set 2)

• plus a separate, independent altitude controller:

more systematic approach: start with Newton-Euler equations of Motion

$$\Sigma f = m \dot{m v}$$
 $\Sigma m au = {f J} \dot{m \omega} + m \omega imes {f J} m \omega$ f, au force and torque $m v, m \omega$ linear, angular velocity

- .J moment of inertia matrix
- this is a nonlinear system.
- we will control it with linear feedback controller
- will return to this in more detail next week

Controlling nonlinear systems using linear state-space control

State-space model example: a Spring Mass System

Converting models to state space form

- Construct a vector of the variables that are required to specify the evolution of the system
- Write dynamics as a *system* of first order differential equations:

$$\begin{bmatrix} \frac{d}{dt} \begin{bmatrix} q_1 \\ q_2 \\ \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} \frac{\dot{q}_1}{\dot{q}_2} \\ \frac{k_2}{m} (q_2 - q_1) - \frac{k_1}{m} q_1 \\ \frac{k_3}{m} (u - q_2) - \frac{k_2}{m} (q_2 - q_1) - \frac{c}{m} \dot{q} \end{bmatrix}$$

$$y = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix}$$
 "State space form"

Model: rigid body physics

- Sum of forces = mass * acceleration
- Hooke's law: $F = k(x x_{rest})$
- Viscous friction: F = c v

$$\begin{vmatrix} m_1 \ddot{q}_1 = k_2(q_2 - q_1) - k_1 q_1 \\ m_2 \ddot{q}_2 = k_3(u - q_2) - k_2(q_2 - q_1) - c\dot{q}_2 \end{vmatrix}$$

Simulating a state-space system

basic task: repeatedly calculate state update:

Python simulation

```
import numpy as np
import matplotlib.pyplot as plt
k1 = k2 = k3 = m1 = c = 1
m2 = 0.1
dt = 0.01
time = np.arange(0, 5, dt)
y data = np.zeros((len(time), 4))
y = np.array((0, 0, 0, 0)) initial condition
                     dynamics function "f"
def dydt(y, u):
     return np.array((
         y[2],
         y[3],
         -(k1+k2)/m1*y[0] + k2/m1*y[1]
         k2/m2*y[0] - (k2+k3)/
            m2*y[1] - c/m2*y[3] + k3/m2*u)
for idx, t in enumerate(time):
    u = np.cos(10*t)
                                update step
    y = y + dt * dydt(y, u)
    y data[idx,:] = y
plt.plot(time, y_data[:,0:2])
plt.legend(('tire displacement',
            'car displacement'))
```

Modeling Terminology

State captures effects of the past

 independent physical quantities that determines future evolution (absent external excitation)

Inputs describe external excitation

 Inputs are extrinsic to the system dynamics (externally specified)

Dynamics describes state evolution

- update rule for system state
- function of current state and any external inputs

Outputs describe measured quantities

- Outputs are function of state and inputs ⇒ not independent variables
- Outputs are often subset of state

Example: spring mass system

- State: position and velocities of each mass: $q_1,q_2,\dot{q}_1,\dot{q}_2$
- Input: position of spring at right end of chain: u(t)
- Dynamics: basic mechanics
- Output: measured positions of the masses: q_1, q_2

Example: quad-rotor aircraft

- State: position and velocity of CM
- Input: speeds of the four motors
- Dynamics: Newton-Euler equations

general form of differential equations

State space form

$$\frac{dx}{dt} = f(x, u)$$
$$y = h(x, u)$$

General form

$$\frac{dx}{dt} = Ax + Bu$$
$$y = Cx + Du$$

Linear system

$$x \in \mathbb{R}^n$$
 , $u \in \mathbb{R}^p$ $y \in \mathbb{R}^q$

- •x = state; n th order
- •u = input; will usually set p = 1
- •y = output; will usually set q = 1

Higher order, linear ODE

$$\frac{d^{n}q}{dt^{n}} + a_{1}\frac{d^{n-1}q}{dt^{n-1}} + \dots + a_{n}q = u$$

$$y = b_{1}\frac{d^{n-1}q}{dt^{n-1}} + \dots + b_{n-1}\dot{q} + b_{n}q$$

$$x = egin{bmatrix} x_1 \ x_2 \ \vdots \ x_{n-1} \ x_n \end{bmatrix} = egin{bmatrix} d^{n-1}q/dt^{n-1} \ d^{n-2}q/dt^{n-2} \ \vdots \ dq/dt \ q \end{bmatrix}$$

$$x = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_{n-1} \\ x_n \end{bmatrix} = \begin{bmatrix} d^{n-1}q/dt^{n-1} \\ d^{n-2}q/dt^{n-2} \\ \vdots \\ dq/dt \\ q \end{bmatrix} \qquad \begin{bmatrix} \frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ \vdots \\ x_n \end{bmatrix} = \begin{bmatrix} -a_1 & -a_2 & \dots & -a_{n-1} & -a_n \\ 1 & 0 & \dots & 0 & 0 \\ 0 & 1 & & 0 & 0 \\ \vdots & & \ddots & & \vdots \\ 0 & 0 & & 1 & 0 \end{bmatrix} x + \begin{bmatrix} 1 \\ 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} u$$

$$y = \begin{bmatrix} b_1 & b_2 & \dots & b_n \end{bmatrix} x$$

dynamic behavior can visualized for 2D systems using "phase portraits"

Phase plane plots show 2D dynamics as vector fields & stream functions

- $\bullet \ \dot{x} = f(x, u(x)) = F(x)$
- Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

$$\frac{d}{dt} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} x_2 \\ -x_1 - x_2 \end{bmatrix}$$

python matplotlib function: 'streamplot'

equilibrium points

Equilibrium points represent stationary conditions for the dynamics

The *equilibria* of the system $\dot{x} = f(x)$ are the points x_e such that $f(x_e) = 0$.

$$\frac{dx}{dt} = \begin{bmatrix} x_2 \\ \sin x_1 - \gamma x_2 \end{bmatrix} \qquad \Rightarrow \qquad x_e = \begin{bmatrix} \pm n\pi \\ 0 \end{bmatrix}$$

stability of equilibrium points

An equilibrium point is:

Stable if initial conditions that start near the equilibrium point, stay near

- Also called "stable in the sense of Lyapunov
- For all $\varepsilon > 0$, there exists $\delta s.t.$

$$||x(0)-x_a||<\delta \implies ||x(t)-x_a||<\epsilon$$

Stable + converging

Unstable if some initial conditions diverge from the equilibrium point

 May still be some initial conditions that converge

"stable" but not asymptotically stable

 $\lim_{t\to\infty} x(t) = x_c \quad \forall ||x(0) - x_c|| < \epsilon$ asymptotically stable

unstable

Example #1: Double Inverted Pendulum

Two series coupled pendula

- •States: pendulum angles (2), velocities (2)
- •Dynamics: F = ma (balance of forces)
- Dynamics are very nonlinear

Local Stability of Nonlinear Systems

Asymptotic stability of the linearization implies *local* asymptotic stability of equilibrium point

Linearization around equilibrium point captures "tangent" dynamics

$$\dot{x} = F(x_a) + \frac{\partial F}{\partial x}\Big|_{x_c} (x - x_a) + \text{higher order terms} \quad \xrightarrow{approx} \quad \begin{aligned} z &= x - x_a \\ \dot{z} &= Az \end{aligned}$$

- linearization is $stable \implies$ nonlinear system locally stable
- linearization is *unstable* ⇒ nonlinear system *locally unstable*
- "degenerate case": if linearization is stable but not asymptotically stable ⇒ cannot tell whether nonlinear system is stable or not!

$$\dot{x} = \pm x^3$$
 $\stackrel{linearize}{\longrightarrow}$ $\dot{x} = 0$

- $\dot{x} = \pm x^3$ $\stackrel{linearize}{\longrightarrow}$ $\dot{x} = 0$ linearization is stable (but not asy stable) nonlinear system can be asy stable or unstable

Local linear approximation is valuable for control design:

- · if dynamics are well-approximated by linearization near an equilibrium point, controller can *ensure* stability there (!)
- controller task: make the linearization stable

Linearization about an equilibrium point

$$\dot{x} = f(x, u)$$
 $y = h(x, u)$
 $\dot{z} = Az + Bv$
 $w = Cz + Dv$

to "linearize" around $x=x_e$:

- 1. find x_e , u_e such that f=0
- **2. define** $y_e = h(x_e, u_e)$ $z = x - x_e$ $v = u - u_e$ $w = y - y_e$

3. then $A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)} \qquad B = \frac{\partial f}{\partial u}\Big|_{(x_e, u_e)}$ $C = \frac{\partial h}{\partial x}\Big|_{(x_e, u_e)} \qquad D = \frac{\partial h}{\partial u}\Big|_{(x_e, u_e)}$

Remarks

- In examples, this is often equivalent to small angle approximations, etc
- Only works near to equilibrium point
- use linearization to design controller

Full nonlinear model

Linear model (honest!)

big idea: if combined linearized system + controller is stable ⇒ full nonlinear system is stable nearby

Jacobian linearization matrix

$$A = \frac{\partial f}{\partial x}\Big|_{(x_e, u_e)} = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \cdots & \frac{\partial f_1}{\partial x_n} \\ \vdots & \ddots & \vdots \\ \frac{\partial f_m}{\partial x_1} & \cdots & \frac{\partial f_m}{\partial x_n} \end{bmatrix}\Big|_{(x_e, u_e)}$$

Example: Stability Analysis of Inverted Pendulum

System dynamics

$$rac{dx}{dt} = egin{bmatrix} x_2 \\ \sin x_1 - \gamma x_2 \end{bmatrix}$$
 ,

Upward equilibrium:

$$\theta = x_1 \ll 1 \implies \sin x_1 \approx x_1$$

$$\frac{dx}{dt} = \begin{bmatrix} x_2 \\ x_1 - \gamma x_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ 1 & -\gamma \end{bmatrix} x$$

• Eigenvalues: $-\frac{1}{2}\gamma \pm \frac{1}{2}\sqrt{4+\gamma^2}$ for $\gamma = 0.1$, $\lambda \approx (0.95, -1.05) \Rightarrow$ unstable

Downward equilibrium:

- Linearize around $x_1 = \pi + z_1$: $\sin(\pi + z_1) = -\sin z_1 \approx -z_1$
- Eigenvalues:

$$z_1 = x_1 - \pi$$

$$z_2 = x_2$$

$$\frac{dz}{dt} = \begin{bmatrix} z_2 \\ -z_1 - \gamma z_2 \end{bmatrix} = \begin{bmatrix} 0 & 1 \\ -1 & -\gamma \end{bmatrix} z$$

$$-\frac{1}{2}\gamma \pm \frac{1}{2}\sqrt{-4+\gamma^2} \quad \text{for } \gamma = 0.1, \ \lambda \cong (-0.05+i, -0.05-i) \Longrightarrow \text{stable}$$

example 2: matrix representation of a linear system

Model: rigid body physics

- Sum of forces = mass * acceleration
- Hooke's law: $F = k(x x_{rest})$
- Viscous friction: F = c v

$$m_1 \ddot{q}_1 = k_2 (q_2 - q_1) - k_1 q_1$$

$$m_2 \ddot{q}_2 = k_3 (u - q_2) - k_2 (q_2 - q_1) - c \dot{q}_2$$

Matrix representation:

 $\dot{x} = Ax + Bu$

$$\begin{bmatrix}
\frac{d}{dt} \begin{bmatrix} q_1 \\ q_2 \\ \dot{q}_1 \\ \dot{q}_2 \end{bmatrix} = \begin{bmatrix} \dot{q}_1 \\ \dot{q}_2 \\ \frac{k_2}{m} (q_2 - q_1) - \frac{k_1}{m} q_1 \\ \frac{k_3}{m} (u - q_2) - \frac{k_2}{m} (q_2 - q_1) - \frac{c}{m} \dot{q} \end{bmatrix} \qquad \dot{x} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_1 + k_2}{m} & \frac{k_2}{m} & 0 & 0 \\ -\frac{k_2}{m} & -\frac{k_2 + k_3}{m} & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ \frac{k_3}{m} \end{bmatrix} u$$

$$y = \begin{bmatrix} q_1 \\ q_2 \end{bmatrix} \qquad \text{"State space form"} \qquad y = \begin{bmatrix} 1 & 1 & 0 & 0 \end{bmatrix} x = Cx$$

$$\dot{x} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ -\frac{k_1 + k_2}{m} & \frac{k_2}{m} & 0 & 0 \\ -\frac{k_2}{m} & -\frac{k_2 + k_3}{m} & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 0 \\ \frac{k_3}{m} \end{bmatrix} u$$

$$y = [1 \quad 1 \quad 0 \quad 0]x = Cx$$

State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

$$\dot{x} = f(x, u)$$
 $x \in \mathbb{R}^n$, $x(0)$ given $y = h(x)$ $u \in \mathbb{R}$, $y \in \mathbb{R}$

Stability: stabilize the system around an equilibrium point

• Given equilibrium point $x_e \in \mathbb{R}^n$, find control "law" $u = \alpha(x)$ such that

$$\lim_{t \to \infty} x(t) = x_e \text{ for all } x(0) \in \mathbb{R}^n$$

• Often choose x_e so that $y_e = h(x_e)$ has desired value r (constant)

Reachability: steer the system between two points

• Given $x_o, x_f \in \mathbb{R}^n$, find an input u(t) such that

$$\dot{x} = f(x, u(t))$$
 takes $x(t_0) = x_0 \rightarrow x(T) = x_f$

Tracking: track a given output trajectory

• Given $r = y_d(t)$, find $u = \alpha(x, t)$ such that

$$\lim_{t \to \infty} (y(t) - y_d(t)) = 0 \text{ for all } x(0) \in \mathbb{R}^n$$

State Feedback: u(t) = -Kx(t)

- Can place poles arbitrarily if system is reachable
- Can relate poles to performance criteria, such as overshoot.
- Can add "dynamic compensator", such as integral feedback, which overcomes modeling errors or uncertainty.
- But, states cannot always be measured, as needed for feedback.

Tests for Reachability

$$\dot{x} = Ax + Bu$$
 $x \in \mathbb{R}^n$, $x(0)$ given $x \in \mathbb{R}^n$, $x(0) \in \mathbb{R}^n$ $x(T) = e^{AT}x_0 + \int_{\tau=0}^T e^{A(T-\tau)}Bu(\tau)d\tau$

Thm A linear system is reachable if and only if the $n \times n$ reachability matrix

$$\begin{bmatrix} B & AB & A^2B & \cdots & A^{n-1}B \end{bmatrix}$$

is full rank.

Note: also called "controllability" matrix

Remarks

- Very simple test to apply. In MATLAB, use ctrb(A,B) and check rank w/ det()
- If this test is satisfied, we say "the pair (A,B) is reachable"
- Some insight into the proof can be seen by expanding the matrix exponential

$$e^{A(T-\tau)}B = \left(I + A(T-\tau) + \frac{1}{2}A^2(T-\tau)^2 + \dots + \frac{1}{(n-1)!}A^{n-1}(T-\tau)^{n-1} + \dots\right)B$$
$$= B + AB(T-\tau) + \frac{1}{2}A^2B(T-\tau)^2 + \dots + \frac{1}{(n-1)!}A^{n-1}B(T-\tau)^{n-1} + \dots$$

State space controller design for linear systems

$$\dot{x}=Ax+Bu$$
 $x\in\mathbb{R}^n,\ x$ (0) given $y=Cx$ $u\in\mathbb{R},\ y\in\mathbb{R}$

$$x(T) = e^{AT}x_0 + \int_{\tau=0}^{T} e^{A(T-\tau)}Bu(\tau)d\tau$$

Goal: find a linear control law $u = -K x + k_r r$ such that the closed loop system

$$\dot{x} = Ax + Bu = (A - BK)x + Bk_r r$$

is stable at equilibrium point x_e with $y_e = r$.

Remarks

- If r = 0, control law simplifies to u = -Kx and system becomes $\dot{x} = (A BK)x$
- Stability based on eigenvalues \Rightarrow use K to make eigenvalues of (A BK) stable
- Can also link eigenvalues to *performance* (eg, initial condition response)
- Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (A - BK) can be set to arbitrary values if and only if the pair (A, B) is reachable.

Python users: use python-control toolbox (available at <u>python-control.org</u>)

MATLAB/Python: K = place(A, B, eigs)