Flight control of
hovering aircraft

Prof. Sawyer B. Fuller
ME 586: Biology-inspired robotics

Project-based portion of this course

* you will work with the crazyflie helicopter
as part of two homework problem sets

e Objectives: learn basics of robotics and drone
control

e optionally, you may use this helicopter as part
of your term project gyroscope

* Crazyflie specs:
 ~30 g, ~4 minute flight time

the crézyflie helicopter

e communicates in real-time
over bluetooth to laptop

| | | | optic flow . .
 sensor suite gives information Sensor ; Y tlme-of-fllght laser
needed to stabilize and control rangefinder
flight

e Open-source control software

YA/ UNIVERSITY of WASHINGTON EN——

example crazyftlie project: odor source localization

Odor
L ocalization

The control task we will cover

g4 (desired state)

e, (error)
high-level —-—>
SyStem
controllef > controller H—»| V% » ¢ (system statc)
| dynamics [x, y, z position,
crazyflie-based - 7 (.) y X, Y, z velocity, z
A : : u (system mmput roll, pitch, yaw angles,
course project: In t_hls course [glmst force]? roll, pitch, yaw rates]
using stable hover [we will learn ways ol torque,
as Star'ting pOint, to design these pitch torque]
build high-level \\
behaviors q _ <
. estimator |e sensors -
(estimated state) -
y (system output)
“measurement”
[roll, pitch, yaw rates (gyro), first step In control
x-optic flow, y-optic flow (optic flow camera), P
z-distance measurement (time of flight)] deSIQn'
assume full state
IS known
\ J \ V)
Y Y

model-based model-based control for basic stability
or model-free

WA UNIVERSITY of WASHINGTON 4

basics: actuation for hovering

single-rotor helicopter robbt flies e.g. four-rotor aircraft
honeybee UW Robofly “quad-rotors”
A
yaw torque

typically, lateral thrust

x
is not directly actuated i
)/
/) -----------
2 / pitch torque

o’ T thrust force

roll torque

L4
L4

WA/ UNIVERSITY of WASHINGTON 5

lateral actuation by tilting

Uy
——
- fa R mg
! lateral acceleration
. 1 . .
Uy, = —mgsinf = gsin @
T

~ 9(9 for small 9

* “helicopter-like” lateral control

WA UNIVERSITY of WASHINGTON 6

quad-rotor actuation actuation with two wings

neutral

* two rotors spin one
direction and two In the
other direction

* vary angle and amplitude
of flapping wings

WA/ UNIVERSITY of WASHINGTON 7

insight into flight control: One approach is nested loops
(problem set 2)

outer loop regulates position.
assumes inner loop inner loop regulates
response is essentially instantaneous attitude

Te | attitude D lateral

—->§9—> PD control f>H—> PD\controI —> dynamics ” dynamics

< P

K derivative terms add damping

* plus a separate, independent altitude controller:

Zd _ ¢z Te | altitude z

—_ PD control —> dynamics >

WA/ UNIVERSITY of WASHINGTON &

more systematic approach: start with
Newton-Euler equations of Motion

2 = mvo
2T =Jw+w X Jw

f, T force and torque
UV, Ww linear, angular velocity

J moment of inertia matrix

e this is a nonlinear system.
e we will control it with linear feedback controller
e Will return to this in more detail next week

W UNIVERSITY of WASHINGTON ¢

Controlling nonlinear systems
using linear state-space control

WA UNIVERSITY of WASHINGTON 10

State-space model example: a Spring Mass System

u(t)

q>

q

m|| mz
ki ky ks

>

C

Converting models to state space form

e Construct a vector of the variables that
are required to specify the evolution of
the system

e Write dynamics as a system of first order
differential equations:

d1
i q2 | _
dt |41

42_

q1
q2
ko k1
—(QQ — 611) — —q1
m m
kg (u B) kg(C
E q2 ——QQ—Ql)——Q_
q1

HHHHHHHH]

Model: rigid body physics
e Sum of forces = mass *
acceleration

e Hooke’s law: F' = k(x — X)
® \/iscous friction: FF=cv

migp =]fz(CI2 — Cll) — kiq1

maGa = ka(u — q2) — ka(q2 — q1) — cgo

11

Simulating a state-space system

E u(t)

»
>

q>
q |

»
>

m|| m2
ki k ks

»
>

S

:
:

C
basic task: repeatedly calculate state update:

i AT — 4 T+ ATq,

0.075 A
0.050 -
0.025 A
0.000 4 =
—0.025 A

—0.050 A

—— tire displacement
car displacement

—0.075 -

0 1 2 3 4 5

Python simulation

import numpy as np

import matplotlib.pyplot as plt

kl = k2 =k3 =ml =c¢c =1

m2 = 0.1
dt = 0.01
time = np.arange (0, 5, dt)

y data = np.zeros((len(time), 4))
y = np.array((0, 0, 0, 0)) Initial condition
def dydt(y, u): dynamics function “f”

return np.array ((

viz2],
y[3],
- (k1+k2) /ml*y[0] + k2/ml*y[1],
k2/m2*y[0] - (k2+k3)/
m2*y[1l] - c¢/m2*y[3] + k3/m2*u))

for idx, t in enumerate (time) :
u = np.cos (10*t)
y =y + dt * dydt(y, u)
y datalidx,:] =y
plt.plot (time, y datal:,0:2])

plt.legend(('tire displacement',
'car displacement'))

update step

12

Modeling Terminology

State captures effects of the past

® independent physical quantities that
determines future evolution (absent
external excitation)

Inputs describe external excitation

® |nputs are extrinsic to the system
dynamics (externally specified)

Dynamics describes state evolution
® update rule for system state

e function of current state and any
external inputs

Outputs describe measured quantities

e Qutputs are function of state and
iInputs = not independent variables

e Qutputs are often subset of state

E

u(t)

q>

e

q |

mll n’lz
k, ky ks

HHHHHHHH]

c

Example: spring mass system
e State: position and velocities of each
mass: 4,4,,4>9
 Input: position of spring at right end of
chain: u(?)
* Dynamics: basic mechanics

e Qutput: measured positions of the
masses: q,,9,

Example: quad-rotor aircraft
e State: position and velocity of CM
* Input: speeds of the four motors

* Dynamics: Newton-Euler equations 13

general form of differential equations

State space form

%=f(z,u) %=Az+Bu z € R*, ueRP
y = h(z,u) y=Cz+ Du y R
General form Linear system -x = state; nth order
_] *u = input; will usually set p =1
Higher order, linear ODE _ o _
y = output; will usually set q = 1
d*q d*1g B ' o -
g T8 gaor o tang =1
dn-1 ,
V—bldt,,_f + o+ +bn—14 + bng
z1| [-a1 —ag —Gn-1 —Gn| 1
[21] [d*efdimH) Z 1 0 0 0 0
Zo d-3g/din—? 4 laz,l |0 1 0 0 |4+ |0],
— — dt | . : : .
=1 : | = : ; ; :
T _1 dg/dt Dy | 0 0 1 0 | 0
L Ty L i
! y=[b1 ba ... bz

dynamic behavior can visualized for
2D systems using “phase portraits”

Phase plane plots show 2D dynamics as vector fields & stream functions
* &= f(z,u(z)) = F(z)
® Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

dr xJ [_xl xJ python matplotlib function: ‘streamplot

equilibrium points

Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system x = f(x) are the points x, such that f(x,) = 0.

& et = == [T

x2 = dxydt)

stability of equmbrlum

An equilibrium point is:

Stable if initial conditions that start
near the equilibrium point, stay near

® Also called “stable in the sense

of Lyapunov

® Forall € > 0, there exists § s.t.
|z(0) — zll <& == [|=(t) — zal| < €

Asymptotically stable if all nearby
initial conditions converge to the

equilibrium point
® Stable + converging

Unstable if some initial conditions
diverge from the equilibrium point

® May still be some initial
conditions that converge

time

“stable” but not
asymptotically stable

x2

-0.5

1
| = = =D
0.5
of N~
-0.5 s

x2

x1,

-1

Jlim 2(2) =z, V]|z(0) — 2ol <e¢
asymptotically stable

05

100
J
N
>
- 0 ey
> N

unstable

Example #1: Double Inverted Pendulum

Two series coupled pendula
eStates: pendulum angles (2), velocities (2
*Dynamics: F = ma (balance of forces)

 Dynamics are very nonlinear

Eq #1 Eq #2

I Eq #3
Stability of equilibria
® Eq #1 is stable

® Eq #3 is unstable

® Eq #2 and #4 are unstable, but
with some stable “modes”

Local Stability of Nonlinear Systems

Asymptotic stability of the linearization implies /ocal asymptotic stability of
equilibrium point
® Linearization around equilibrium point captures “tangent” dynamics

0
2= —T
5= pipl = O :

. (z — z,) + higher order terma —— 5= Az
- linearization is stable = nonlinear system locally stable
* linearization is unstable = nonlinear system locally unstable

- “degenerate case”: if linearization is stable but not asymptotically stable =
cannot tell whether nonlinear system is stable or not!

. 3 linearize . * linearization is stable (but not asy stable)
X=+X — x=0

Local linear approximation is valuable for control design:

* nonlinear system can be asy stable or unstable

- if dynamics are well-approximated by linearization near an equilibrium point,

controller can ensure stability there (!)
- controller task: make the linearization stable

WA UNIVERSITY of WASHINGTON 19

x=f(x,u) z=Az + By
 —

y=h(x,u) w=Cz+ Dv
to “linearize” around x=x,:
1. find x., u. such that /=0

2. define v, =h(x, ,u,)
Z=X-X, V=u—-u, W=

3. then_ %) %
ox (,.t1,) o (x,.,)
c.9 p9
X1 (1, u,) L
Remarks
* [n examples, this is often
equivalent to small angle

03 02 01 O0 01 02 03 e 03 02 01 0 01 02 03
X

approximations, etc

e Only works near to equili- _ .
brium point Full nonlinear model Linear model (honest!)
* use linearization big idea: if combined linearized system + controller is stable

to design controller = full nonlinear system is stable nearby

Jacobilan linearization matrix

on . 9K
011 ox,
ax(.,) ° -
0 fm O fm
| 8331 8:13n I (e, 10)

W UNIVERSITY of WASHINGTON 21

Example: Stability Analysis of Inverted Pendulum

System dynamics

@® Upward equilibrium:
=z, €1 => sinz, Nz

z) —'m] [1 -'7]

® Eigenvalues: —Eq:l: 5\/4 +19? for y=0.1, 1=(0.95, —1.05) = unstable

Downward equilibrium:
® Linearize around x; =n + z;: sin(r+2,) = —sinz; & —3
® Eigenvalues:

. 2= —F . £= 29]=[0 1]3
Z3 = T3 gt |~Aa—7Tx -1 —

i %¢_4 Fo@ fory=0.1, 1=(-0.05+, -0.05-i) = stable

example 2: matrix representation of a linear system

u(t)

q>

q

ki ky ks

>

Model: rigid body physics

e Sum of forces = mass *

acceleration
e Hooke’s law: F = k(x — x,..,)

® \/iscous friction: F=cv

q1
q2
ko k1
—(612 — 611) — —q1
m
(= 02) 2o 1)~ =
q2 m d2 — q1 Q_

migp = kz(CI2 — Cll) — k11
maoGs = k3(u — q2) — ka(q2 — q1) — cgo

HHHHHHHH]

Matrix representation:

x = Ax + Bu

0

0
ki + k,

m
k;

m

y=[1 1 0 0]x=Cx

k

m
ky, + k;

m

p—

0

07 o
1 0
0
Olx+]0 |u
k3
0 m.

23

State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

= f(x,u) xr € R", 2(0) given
y = h(x) ueR, yeR

Stability: stabilize the system around an equilibrium point
e Given equilibrium point z. € R" | find control “law” « = a(x)
such that
lim z(t) = x, for all z(0) € R"

t— 00

e Often choose x. so that y. = /(x.) has desired value r (constant)

Reachability: steer the system between two points
e Given 7,.2r € R" find an input u(#) such that

r = f(x,u(t)) takes x(tg) = 2o — (1) = x5

Tracking: track a given output trajectory
e Given r = y(1), find u = a(x,7) such that

lim (y(t) — ya(t)) = 0for all z(0) € R"

t— 00

State Feedback: u(t) = —Kx(t)
e Can place poles arbitrarily if system is reachable
e Can relate poles to performance criteria, such as overshoot.

e Can add “dynamic compensator”, such as integral feedback, which
overcomes modeling errors or uncertainty.

* But, states cannot always be measured, as needed for feedback.

d
Controller Process
: | : ! U | x = Ax + Bu
r -k -3) ro{ L = ‘ =)
T T y=Cx+ Du

Tests for Reachability

i =Ar+ Bu x € R"™ x(0) given

T
x(T)=e""x,+ ["' ™ Bu(t)dr

Thm Alinear system is reachable if and only if the n x n reachability matrix

[B AB A2B ... An—lB]
Note: also called
Is full rank. “controllability” matrix

Remarks
e \ery simple test to apply. In MATLAB, use ctrb(A,B) and check rank w/ det()
e |f this test is satisfied, we say “the pair (A,B) is reachable”
e Some Insight into the proof can be seen by expanding the matrix exponential

(1+A(T— P AT -2+ (n_ll)!A”—l(T— ryn-1 +> B

1 1
B+AB(T -+ APB(T =D+ + o,

eA(T—T)B

AV IB(T =)l 4.

State space controller design for linear systems

r=Ar+ Bu € Rn, $(O) given

T
x(TY=e"x. + [e’ ™ Bu)dt
y:C;I? UGR,’UGR () 0 1;[0 ()

Goal: find a linear control law v =-K x + k. r Controller Process
such that the closed loop system

r=Ar+ Bu=(A— BK)x+ Bk,r . :
Is stable at equilibrium point x, with y, = r. é)‘ |

Remarks
e |f » =0, control law simplifies to # = -K x and system becomes = = (A — BK)x
e Stability based on eigenvalues = use K to make eigenvalues of (4 - BK) stable
e Can also link eigenvalues to performance (eg, initial condition response)
e Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (4 - BK) can be set to arbitrary values if and only if the
pair (4, B) is reachable.

Python users: use python-control toolbox

MATLAB/Python: K = place(A, B, eigs) (available at python-control.org)

