

ME586

Introduction to crazyflie

bitcraze.io

♦ Bitcraze is the company which develops and manufactures the Crazyflie, a small, versatile quadcopter for research and education.

What makes the crazyflie so special?

- ♦ Open-source
- Safe

Flying the crazyflie

- ♦ Use your phone! (manual flight only)
- ♦ Use a PC and a usb controller (e.g. xbox/playstation controller) (manual flight only)
- ♦ Use a PC and python code (autonomous and/or semi-autonomous flight)

Your crazyflie

- Crazyflie 2.1 (most recent version)
- Optic Flow deck
- Crazyradio
- Custom VM
 - Crazyflie Client (cfclient)
 - Example python scripts (in ROS)

The Virtual Machine

- ♦ Different from the bitcraze VM!
- ♦ It is a mirror of the workspace that I run for my research
- ♦ Allows interface with ROS (more about this later)
- ♦ Packages be installed on your own Linux machine (ask me about this if you want to know more!)

Linux

♦ The VM is a Linux based system – specifically Ubuntu 18.04

A couple useful commands for navigating within the terminal

- ♦ cd
 - ♦ cd folder name enters the specified folder
 - ♦ cd folder_name/subfolder_name enters subfolder
 - ♦ cd .. goes out one folder level
- ♦ pwd prints out current working directory
- ♦ 1s lists all the files in current directory
- ♦ sudo nano filename.type quickly opens the file "filename.type" to be edited within the terminal. E.g. sudo nano myscript.py

Crazyflie client

♦ To start the crazyflie client gui, open a terminal and type cfclient

Not connected						
File Connect Input device Settings View Help						
Select an interface		Scan		Battery:	Link Quality:	
radio://0/80/250K Address: 0XE/E/E/E/E/	Auto Reco	nnect				
Flight Control Cons	sole LED Log Block	s Log TOC Parameters	Plotter	Loco Positioning		
Basic Flight Control		Flight Data				
Flight mode	Normal ▼					
Assist mode	7	20).0		20.0	
Roll Trim	0.00					
Pitch Trim	0.00	10	0.0		10.0	
Client X-mode	Crazyflie X-mode					
Attitude control	Rate control					
Advanced Flight Contr	rol					0.0
Max angle/rate	30		0.0		40.0	
Max Yaw angle/rate	200	-1	0.0		-10.0	
Max thrust (%)	80.00					
Min thrust (%)	25.00	-2	0.0		-20.0	
SlewLimit (%)	45.00			_ 		
Thrust lowering slewrate (%/sec)	30.00	Target	<u> </u>	Actual	Thrust M1 M2	M3 M4
		Pitch 1.20				
Expansion boards		Roll 1.03				
LED-ring effect	7	Yaw 0.00				
	LED-ring headlight	Height				
ing Normal mux with	XInput Controller #1 (x	rbox360_mode1)				

ROS

♦ The Robot Operating System (ROS) is a set of software libraries and tools that help you build robot applications.

- What I like about ROS:
 - ♦ Easy to write and work with "nodes"
 - ♦ Easy to communicate between "nodes"
 - ♦ Large user database to debug
 - ♦ Portable to different robotic platforms

♦ You will NOT need to "learn" ROS, but understanding how and why we use this will be helpful.

Step 1: Assemble the crazyflie

- ♦ Follow the instructions on bitcraze.io
- ♦ Tutorials > Getting Started with Crazyflie 2.X
 (STOP at the flying section, do not fly yet!)
- You are also given a crazyradio, extra battery + charger, Flow Deck, and Prototype Deck
- ♦ Add the Flow deck by using the long header pins and matching up the orientation symbol on the deck to the crazyflie board.

Step 2: Changing the radio channel on your crazyflie

- Open cfclient
- ♦ Scan and connect to crazyflie, wait until movement shows up on flight data
- ♦ Go to Connect>Configure 2.X
- Change the radio channel and write to crazyflie
- Open a terminal and navigate to catkin_ws/src/rospy_crazyflie/config
- ♦ Edit the file config. yaml so that the crazyflie uri has the correct radio channel

```
crazyflie1 : 'radio://0/81/2M/E7E7E7E7'
```

Step 3: How to fly the crazyflie

- ♦ Plug in crazyradio, connect it to the VM
- ♦ Turn on crazyflie (place on flat surface, press power button, do not move until after beeps)
- Open two terminals (right click on terminal icon to open second terminal)
- In one terminal:
 - ♦ roslaunch rospy crazyflie default.launch
 - ♦ Wait until you see that it is "connected" to the crazyflie
- ♦ In the other terminal:
 - ♦ Navigate to the folder catkin_ws/src/rospy_crazyflie/examples using the cd command
 - ♦ Execute an example program python takeoff landing.py

Step 4: Examining the code

♦ In the file explorer, navigate to one of the python scripts in the examples folder and open it in a text editor (save eag.py for last)

Live example