
The linear quadratic
regulator (LQR controller)

summary: robot dynamics, LQR

2

⌃f = mv̇

⌃⌧ = J!̇ + ! ⇥ J!
<latexit sha1_base64="PtIv2PGfAIakLBhWeeE4JpFt5eQ=">AAACi3icbVFdSyMxFM3M+lHrV3UffRksiiCUGT9QxAVRFhafFK0KTSl30kwNJpMhuSOUYfbH7E/aN/+NmdqH6ngh5HDuOeTk3jiTwmIYvnn+j7n5hcXGUnN5ZXVtvbWx+WB1bhjvMi21eYrBcilS3kWBkj9lhoOKJX+MX66q/uMrN1bo9B7HGe8rGKUiEQzQUYPWP3onRgporOXQjpW7iqT8tftX0aHGYpZ+LUtK62qKkFcGqgCf46S4LmtOqhUfQVnuf0NSFIrbGXNdMmi1w044qaAOoilok2ndDFr/XQSWK54ik2BtLwoz7BdgUDDJyybNLc+AvcCI9xxMwSXoF5NZlsGOY4ZBoo07KQYTdtZRgLJVPqesQtuvvYr8rtfLMTntFyLNcuQp+3goyWWAOqgWEwyF4Qzl2AFgRrisAXsGAwzd+ppuCNHXL9fBw0EnOuwc3x61Ly6n42iQLbJN9khETsgF+UNuSJcwr+F1vBPv1F/1D/0z//xD6ntTz0/yqfzf75qPzII=</latexit>

dynamics with pure vectors dynamics for simulation

world coordinates
body-attached

coordinates

world coordinates

orientation

a linear quadratic regulator has the form of a state feedback controller with gain K:

it minimizes the quadratic (scalar) cost function given by

Where and are symmetric matrices. This approach shifts the design
problem from gain choices to weight choices

Q ≥ 0 R > 0

remarks on linear quadratic regulator
• computing K requires solving “algebraic riccati equation”

• tricky to solve & requires numerical iteration  
⇒ best to use software from experts 
ct.lqr(A,B,Q,R) or MATLAB lqr(A,B,Q,R)

• LQR is a special case of general optimization problem: find u that minimizes
given cost function and satisfies constraints (e.g. max throttle). This can be used
to guide system to desired state/trajectory

• sketch for how LQR is solved:
• use pontryagin’s maximum principle (variational calculus)
• in special case of linear, time-invariant system, quadratic cost, and infinite

time horizon, result is that input is a linear function of state: u=-Kq
• for control far away from equilibrium (e.g. aggressive maneuvers), need full

nonlinear trajectory tracking
• common “engineering” approach is receding horizon control (a.k.a. “model

predictive control”): repeatedly calculate optimal u over a short horizon
• biology-inspired: explore the solution space, reward if success (reinforcement

learning). parameterize controller/“policy" with a neural network

3

more remarks
• Full 3D flight control requires two separate, parallel 2D controllers.

Also required are coordinate rotations between inner and outer loops.
• See Fuller2019, “Four Wings: An Insect-Sized Aerial Robot With

Steering ability and payload capacity for autonomy”, Robotics and
Automation Letters (2019) on the course web page for one
approach.

• Simulating in 3D leads to ill-formed R matrices because
of numerical inaccuracy. Better to parameterize R with Euler Angles or
quaternions
• Euler Angles: see Mellinger2012: “Trajectory generation and

control for precise aggressive maneuvers with quadrotors” Int. J.
Robot. Res. on course we page

• To compensate for steady-state disturbances, e.g. torque bias that we
must correct for, do integral action by adding a state z:

4

u = −Kx − Kiz

