

control and dynamics

Prof. Sawyer B. Fuller
ME 586: Biology-inspired robotics

Project-based portion of this course

« you will work with the crazyflie helicopter
as part of your homework problem sets

e |earning objectives:

e |earn basics of robotics and drone
control

e experience implementing bio-inspired
control algorithm gyroscope

» Crazyflie specs:
 ~30 g, ~4 minute flight time

e communicates in real-time
over bluetooth to laptop A
optic flow dN

* sensor suite gives information Y Y time-of-flight laser
it sensor \ :
Hiegehctjed to stabilize and control rangefinder

e Open-source control software

the crézyflie helicopter

WA/ UNIVERSITY of WASHINGTON SR ——"

three 1deas inspired by biology
for how to Improve robotics

(the themes of this course)

1. adaptation through @ fundamental engineering

evolution and learning processes used by biology
& “curse of dimensionality”

2. mechanical intelligence

the use of meghanlcs to N @ “shortcut”: look directly to
reduce or eliminate the biology for inspiration, combine

need for feedback control with engineering knowledge
3. parsimony MES86 homework and projects emphasize
these. We will show that the optimal control
simple and efficient J formulation we use for flight stability is also
solutions the basis for robot learning.

WA/ UNIVERSITY of WASHINGTON 4

crazyflie in operation performing odor source localization

Odor
L ocalization

Anderson,
Sullivan,
Horiuchi,
Fuller, &

Daniel,
Bioinspiration
& Biomimetics

2020

the controller we will learn

g4 (desired state)

\ e, (error) .
high-level > troll j system > 4 (system state)
controller controlier d - g
- —| aynamics [x, v, z position,

. ! / X, y, z velocity,
pr9blem set 4: i thi u (system input) roll, pitch, yaw angles,
using stable hover In _ IS course [thrust force, roll, pitch, yaw rates]
as starting point, we will learn ways roll torque,
build high-level to design these pitch torque]
behaviors A \ﬁ

q - <
timated stat estimator [« sensors -
(estimated state) —
y (system output)
“measurement”
[roll, pitch, yaw rates (gyro), first step in control
x-optic flow, y-optic flow (optic flow camera), desian:
z-distance measurement (time of flight)] gn:
assume full state
Is known

e p——— —————————————— ——————————————————

model-based model-based control for basic stability
or model-free

WA UNIVERSITY of WASHINGTON 6

basics: actuation for hovering

single-rotor helicopter robbt flies e.g. four-rotor aircraft
honeybee UW Robofly “quad-rotors”
A
yaw torque

typically, lateral thrust

\
is not directly actuated y /i

p [———
/ pitch torque

o’ T thrust force

roll torque

L4
L4

W UNIVERSITY of WASHINGTON 7

't you can tilt, how do you move laterally?

lateral acceleration

f~mg

mv,=f.=fsin0 ~ mgsino
= v, =gsind

~ g0 for small 0

* “helicopter-like” lateral control

WA/ UNIVERSITY of WASHINGTON &

quad-rotor actuation actuation with two wings

neutral

* two rotors spin one
direction and two In the
other direction

* vary angle and amplitude
of flapping wings

WA UNIVERSITY of WASHINGTON ¢

insight into flight control: One approach is nested loops
(problem set 2)

outer loop regulates position.

assumes inner loop inner loop regulates
response is essentially instantaneous attitude
\ O = Uz /9 \

grpm— >

Te attitude lateral

—-)@» PD ContrOJ"’ET')_’ PR control E dynamics > dynamics
— \

\ derivative terms add damping

—/

* plus a separate, independent altitude controller:

Zd _ ¢z Te | altitude z

—> PD control —> J : >
ynamzcs

WA/ UNIVERSITY of WASHINGTON 10

more systematic and modern approach

1. A good model: Newton-Euler equations of Motion
> = mvo
DT =Jw+ w x Jw

f, T force and torque
V,Ww linear, angular velocity

J moment of inertia matrix

e this Is a nonlinear system.
e« we will control it with linear feedback controller

* will return to these equations in more detail next week

2. Optimal control: measure performance with a cost function

WA UNIVERSITY of WASHINGTON 11

Controlling nonlinear systems
using linear state-space control

WA UNIVERSITY of WASHINGTON 12

State-space model example: a Spring Mass System

u(?)

q>

q

m|| m2
ky ky ks

>

C

Converting models to state space form

» Construct a vector of the variables that
are required to specify the evolution of
the system

* Write dynamics as a system of first order
differential equations:

d1
i q2 | _
dt |41

42_

q1
q2
ko k1
—(QQ — 611) — —q1
m m
kg (u B) kg(C
E q2 ——QQ—Ql)——Q_
q1

“State space form”

HHHHHHHH]

Model: rigid body physics
® Sum of forces = mass *
acceleration

e Hooke’s law: FF'= k(x — X .q)
® \/iscous friction: F ' =cv

migp =]fz(CI2 — Cll) — kiq1

maGa = ka(u — q2) — ka(q2 — q1) — cgo

13

u(t)

»
>

q>

»
>

q

»
>

C
basic task: repeatedly calculate state update:

m|| m2
ky ky ks

S

u

g AT =494 T AT(.]t =q,; + ATf(‘l)

0.075 A

0.050 -

0.025 A

0.000 -

—0.025 A

—0.050 A

—0.075 -

B e R

—— tire displacement
car displacement

3 4 5

Simulating a state-space system

Python simulation

import numpy as np

import matplotlib.pyplot as plt

kl = k2 =k3 =ml =¢c =1
m2 = 0.1
dt = 0.01

time = np.arange (0, 5, dt)
g data = np.zeros((len(time), 4))

g = np.array((0, 0, 0, 0)) + initial condition

def f (g, u): + dynamics function
return np.array ((

qalz2],

al3],

- (k1+k2)/ml*gq[0] + k2/ml*qg[l],

k2/m2*q[0] - (k2+k3)/

m2*q[l] - c¢/m2*g[3] + k3/m2*u))

for idx, t in enumerate (time) :

u = np.cos (10*t)

qg =g+ dt * f£(q, u) + update step
q datalidx,:] = g + store result
g datal[:,0:2])

plt.legend(('car displacement (gl)',
'"tire displacement (g2)'))

plt.plot (time,

14

general form of differential equations

State space form

¢%:3"(:::,1;) %=Az+Bu z€R", ucRP
g
y = h(z,u) y=Cz+ Du yekR
General form Linear system -x = state; nth order

phase plots show 2D behavior

Phase plane plots show 2D dynamics as vector fields & stream functions
* &= f(z,u(z)) = F(z)
® Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

*2 python: use ‘streamplot’
function in Matplotlib

0.5

l////.»‘_.\
/////..\

o
(8]

equilibrium points

Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system x = f(x) are the points x, such that f(x,) = 0.

Example:

& et = == [T

X2 =dxy/dt

stability of equmbrlum

An equilibrium point is:

Stable if initial conditions that start
near the equilibrium point, stay near

® Also called “stable in the sense
of Lyapunov

time

“stable” but not
asymptotically stable

1
| = = =D
0.5
of N~
-0.5 s

x2

x1,

Asymptotically stable if all nearby
initial conditions converge to the
equilibrium point

=

® Stable + converging

Unstable if some initial conditions 0s
diverge from the equilibrium point

® May still be some initial
conditions that converge -

unstable

Example #1: Double Inverted Pendulum

Two series coupled pendula
eStates: pendulum angles (2), velocities (2
*Dynamics: F = ma (balance of forces)

 Dynamics are very nonlinear

Eq #1 Eq #2

I Eq #3
Stability of equilibria
® Eq #1 is stable

® Eq #3 is unstable

® Eq #2 and #4 are unstable, but
with some stable “modes”

x=f(x,u) z=Az+ Bv

ﬁ

y =h(x,u) w=Cz + Dv
to “linearize” around x = x.:
1. find x,, u. such that /=0

2. define), =h(x, ,u,)
Z=X-X, V=u—-u, w=y-y,
3. then

0 0
— i B = i
ax (x,.u,) au (x,,u,) , —>—> SN 03
oh oh 12— 02—
C - — D -_— — . y 7 : _&_\“ R ' ! \ 0.1p J /
ax (X, ’ue) au (X, ’ue) [1 1 ' \ “:A’,?-‘ﬂ'k_;: \ ; | ‘ % of({l ! ({l 7
Remarks ANN\NS—— NN
* In examples, this is often
equivalent to small angle -

03 -02 -01 0 0.1 02 03

approximations, etc . .
e Only works near to equili- full nonlinear model linear model (honest!)

brium point
* use linearization
to design controller

big idea: if combined linearized system + controller is stable
= nonlinear system (incl control) is stable nearby

Jacobilan linearization matrix

on . 9K
011 ox,
c')x(.,) ° -
0 fm O fm
| 8331 8:13n (e, 10)

WA UNIVERSITY of WASHINGTON 20

Example: Stability Analysis of Inverted Pendulum

System dynamics

dz _

T2
d¢ |sinz) —yzg]’

Equilibria: where x = [8] > X, =

0
Linearize to assess stability: 6_f =
X

0
A:—f|:01
ox Y I —y

use Zl=x1—xle=x1—7t, Z2=XZ

—) (=)

+rk, k=0, 1, 2, 3...
0

_ ¥ o -
ox; Ox,) 1
o, on | [cos X —y]
0x; 0x,

Upward equilibria: x;, = £ 271'](,_ k = O,_l, 2, 3...

1 1
eigenvalues: 1 = —§7zl: 5\/4 + 73

for y = 0.1, 1=(0.95, —1.05) — unstable

Downward equilibria: x, =7 27k, k=0, 1, 2, 3...

=> 7 =Az

eigenvalues: A = —%15: %\/ —4 2

for y =0.1, A=(—0.05+i, —0.05—i) = stable

example 2: matrix representation of a linear system

u(?)

q>

q

ki ka k3

>

Model: rigid body physics

® Sum of forces = mass *

acceleration
e Hooke’s law: F' = k(x — X,oq)

® Viscous friction: F =c v

q1
q2
ko k1
—(612 — 611) — —q1
m
(= 02) 2o 1)~ =
q2 m d2 — q1 Q_

“State space form”

migp = kz(CI2 — Cll) — k11
maoGs = k3(u — q2) — ka(q2 — q1) — cgo

HHHHHHHH]

Matrix representation:

x = Ax + Bu

0

0
ki + k,

m
k;

m

y=[1 1 0 0]x=Cx

k

m
ky, + k;

m

p—

0

07 o
1 0
0
Olx+]0 |u
k3
0 m.

22

State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

= f(x,u) xr € R", 2(0) given
y = h(x) ueR, yeR

Stability: stabilize the system around an equilibrium point
e Given equilibrium point z. € R" | find control “law” u = a(x)
such that

lim x(t) = z. for all z(0) € R"

t— 00

e Often choose x. so that y. = /(x.) has desired value r (constant)

Reachability: steer the system between two points
e Given 7,.2r € R" find an input u(#) such that

r = f(x,u(t)) takes x(tg) = 2o — (1) = x5

Tests for Reachability

r = Ax + Bu r € R™, (0) given

T
x(T)=ex. + [e’ ™ Butt)dt
y=~Cux uelR, yelR () ! lo)

Thm Alinear system is reachable if and only if the n x n reachability matrix

[B AB A2B ... An—lB]
Note: also called
Is full rank. “controllability” matrix

Remarks
[Very Simple test : control.ctrb(a,B) and check rank with numpy. linalg.matrix rank()

e [f this test Is satisfied, we say “the pair (A,B) is reachable”

State space controller design for linear systems

ir=Ar+Bu x € R"™ x(0) given ! o
: : ! (0) x(T) = eATxO + f e)Bu(t)dt
=0

y=Cux u€eR, yeR
Goal: find a linear control law # = -K x ~ Controller ‘ Process
such that the closed loop system r | — i—fi\ % | 3= A+ B
r=Ar+ Bu=(A— BK)zx ' v y=Cx+Du
is stable at x = 0 (assumes x are coordinates e L |
. X

relative to location of equilibrium)

e Stability based on eigenvalues = use K to make eigenvalues of (4 - BK) stable

e Can also link eigenvalues to performance (eg, initial condition response)
¢ Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (4 - BK) can be set to arbitrary values if and only if the
pair (4, B) is reachable.

Next: one way to choose K

control and dynamics

Prof. Sawyer B. Fuller
ME 586: Biology-inspired robotics

Project-based portion of this course

« you will work with the crazyflie helicopter
as part of your homework problem sets

e |learning objectives:

e |earn basics of robotics and drone
control

e experience implementing bio-inspired
control algorithm gyroscope
» Crazyflie specs:

 ~30 g, ~4 minute flight time

e communicates in real-time
over bluetooth to laptop ron
optic flow , \

* Sensor suite gives information time-of-flight laser
needed to stabilize and control sensor , .

flight . rangefinder

e Open-source control software

the crézyflie helicopter

YA/ UNIVERSITY of WASHINGTON S

three 1deas inspired by biology
for how to Improve robotics

(the themes of this course)

1. adaptation through @ fundamental engineering

evolution and learning processes used by biology
& “curse of dimensionality”

2. mechanical intelligence

the use of meghanlcs to N @ “shortcut”: look directly to
reduce or eliminate the biology for inspiration, combine

need for feedback control with engineering knowledge
3. parsimony MES86 homework and projects emphasize
these. We will show that the optimal control
simple and efficient J formulation we use for flight stability is also
solutions the basis for robot learning.

WA/ UNIVERSITY of WASHINGTON 28

crazyflie in operation performing odor source localization

Odor
L ocalization

Anderson,
Sullivan,
Horiuchi,
Fuller, &

Daniel,
Bioinspiration
& Biomimetics

2020

the controller we will learn

g4 (desired state)

\ e, (error) .
high-level > troll j system > 4 (system state)
controller controlier d - g
- —| aynamics [x, v, z position,

. ! / X, y, z velocity,
pr9blem set 4: i thi u (system input) roll, pitch, yaw angles,
using stable hover In _ IS course [thrust force, roll, pitch, yaw rates]
as starting point, we will learn ways roll torque,
build high-level to design these pitch torque]
behaviors A \ﬁ

q - <
timated stat estimator [« sensors -
(estimated state) —
y (system output)
“measurement”
[roll, pitch, yaw rates (gyro), first step in control
x-optic flow, y-optic flow (optic flow camera), desian:
z-distance measurement (time of flight)] gn:
assume full state
Is known

e p——— —————————————— ——————————————————

model-based model-based control for basic stability
or model-free

WA/ UNIVERSITY of WASHINGTON 20

basics: actuation for hovering

single-rotor helicopter robbt flies e.g. four-rotor aircraft
honeybee UW Robofly “quad-rotors”
A
yaw torque

typically, lateral thrust

\
is not directly actuated y /i

p [———
/ pitch torque

o’ T thrust force

roll torque

L4
L4

W UNIVERSITY of WASHINGTON 51

't you can tilt, how do you move laterally?

lateral acceleration

f~mg

mv,=f.=fsin0 ~ mgsino
= v, =gsind

~ g0 for small 0

* “helicopter-like” lateral control

WA UNIVERSITY of WASHINGTON @2

quad-rotor actuation actuation with two wings

neutral

* two rotors spin one
direction and two In the
other direction

* vary angle and amplitude
of flapping wings

WA UNIVERSITY of WASHINGTON a3

insight into flight control: One approach is nested loops
(problem set 2)

outer loop regulates position.

assumes inner loop inner loop regulates
response is essentially instantaneous attitude
\ O = Uz /9 \

grpm— >

Te attitude lateral

—-)@» PD ContrOJ"’ET')_’ PR control E dynamics > dynamics
— \

\ derivative terms add damping

—/

* plus a separate, independent altitude controller:

Zd _ ¢z Te | altitude z

—> PD control —> J : >
ynamzcs

WA/ UNIVERSITY of WASHINGTON 34

more systematic and modern approach

1. A good model: Newton-Euler equations of Motion
> = mvo
DT =Jw+ w x Jw

f, T force and torque
V,Ww linear, angular velocity

J moment of inertia matrix

e this Is a nonlinear system.
e« we will control it with linear feedback controller

* will return to these equations in more detail next week

2. Optimal control: measure performance with a cost function

WA/ UNIVERSITY of WASHINGTON 3

Controlling nonlinear systems
using linear state-space control

WA/ UNIVERSITY of WASHINGTON 36

State-space model example: a Spring Mass System

u(?)

q>

q

m|| m2
ky ky ks

>

C

Converting models to state space form

» Construct a vector of the variables that
are required to specify the evolution of
the system

* Write dynamics as a system of first order
differential equations:

d1
i q2 | _
dt |41

42_

q1
g2
ko k1
—(QQ — 611) — —q1
m m
% (4 g) — 2 (g — qn) — &
—_— u —_ —_ —_ —_
m g2 d2 — 41 Q_
Q1 ¢¢ 99
0o State space form

HHHHHHHH]

Model: rigid body physics
® Sum of forces = mass *
acceleration

e Hooke’s law: FF'= k(x — X .q)
® \/iscous friction: F ' =cv

migp =]fz(CI2 — Cll) — kiq1

maGa = ka(u — q2) — ka(q2 — q1) — cgo

37

u(t)

»
>

q>

»
>

q

»
>

C
basic task: repeatedly calculate state update:

m|| m2
ky ky ks

S

u

g AT =494 T AT(.]t =q,; + ATf(‘l)

0.075 A

0.050 -

0.025 A

0.000 -

—0.025 A

—0.050 A

—0.075 -

B e R

—— tire displacement
car displacement

3 4 5

Simulating a state-space system

Python simulation

import numpy as np

import matplotlib.pyplot as plt

kl = k2 =k3 =ml =¢c =1
m2 = 0.1
dt = 0.01

time = np.arange (0, 5, dt)
g data = np.zeros((len(time), 4))

g = np.array((0, 0, 0, 0)) + initial condition

def f (g, u): + dynamics function
return np.array ((

qalz2],

al3],

- (k1+k2)/ml*gq[0] + k2/ml*qg[l],

k2/m2*q[0] - (k2+k3)/

m2*q[l] - c¢/m2*g[3] + k3/m2*u))

for idx, t in enumerate (time) :

u = np.cos (10*t)

qg =g+ dt * f£(q, u) + update step
q datalidx,:] = g + store result
g datal[:,0:2])

plt.legend(('car displacement (gl)',
'"tire displacement (g2)'))

plt.plot (time,

38

general form of differential equations

State space form

¢%:3"(:::,1;) %=Az+Bu z€R", ucRP
g
y = h(z,u) y=Cz+ Du yekR
General form Linear system -x = state; nth order

phase plots show 2D behavior

Phase plane plots show 2D dynamics as vector fields & stream functions
* &= f(z,u(z)) = F(z)
® Plot F(x) as a vector on the plane; stream lines follow the flow of the arrows

*2 python: use ‘streamplot’
function in Matplotlib

0.5

l////.»‘_.\
/////..\

o
(8]

equilibrium points

Equilibrium points represent stationary conditions for the dynamics

The equilibria of the system x = f(x) are the points x, such that f(x,) = 0.

Example:

& et = == [T

X2 =dxy/dt

stability of equmbrlum

An equilibrium point is:

Stable if initial conditions that start
near the equilibrium point, stay near

® Also called “stable in the sense
of Lyapunov

time

“stable” but not
asymptotically stable

1
| = = =D
0.5
of N~
-0.5 s

x2

x1,

Asymptotically stable if all nearby
initial conditions converge to the
equilibrium point

=

® Stable + converging

Unstable if some initial conditions 0s
diverge from the equilibrium point

® May still be some initial
conditions that converge -

unstable

Example #1: Double Inverted Pendulum

Two series coupled pendula
eStates: pendulum angles (2), velocities (2
*Dynamics: F = ma (balance of forces)

 Dynamics are very nonlinear

Eq #1 Eq #2

I Eq #3
Stability of equilibria
® Eq #1 is stable

® Eq #3 is unstable

® Eq #2 and #4 are unstable, but
with some stable “modes”

Stability of linear systems x = Ax

. Theorem: linear system is asymptotically stable if and only if all eigenvalues A
of A have negative real part.

L ocal stability of nonlinear systems X = F(x)

Asymptotic stability of the linearization implies /ocal asymptotic stability of
equilibrium point
® Linearization around equilibrium point captures “tangent” dynamics

0
2= —T
5= pipl = OF :

. (z — z,) + higher order termsa —— 5= Az
- linearization is stable = nonlinear system locally stable
- linearization is unstable = nonlinear system locally unstable

- “degenerate case’: if linearization is stable but not asymptotically stable = cannot
tell whether nonlinear system is stable or not!

. 3 linearize . * linearization is stable (but not asy stable)
* nonlinear system can be asy stable or unstable

Local linear approximation is valuable for control design:
- if dynamics are well-approximated by linearization near an equilibrium point,

controller can ensure stability there (!)
- controller task: make the linearization stable

WA/ UNIVERSITY of WASHINGTON 43

x=f(x,u) z=Az+ Bv

ﬁ

y =h(x,u) w=Cz + Dv
to “linearize” around x = x.:
1. find x,, u. such that /=0

2. define), =h(x, ,u,)
Z=X-X, V=u—-u, w=y-y,
3. then

0 0
— i B = i
ax (x,.u,) au (x,,u,) , —>—> SN 03
oh oh 12— 02—
C - — D -_— — . y 7 : _&_\“ R ' ! \ 0.1p J /
ax (X, ’ue) au (X, ’ue) [1 1 ' \ “:A’,?-‘ﬂ'k_;: \ ; | ‘ % of({l ! ({l 7
Remarks ANN\NS—— NN
* In examples, this is often
equivalent to small angle -

03 -02 -01 0 0.1 02 03

approximations, etc . .
e Only works near to equili- full nonlinear model linear model (honest!)

brium point
* use linearization
to design controller

big idea: if combined linearized system + controller is stable
= nonlinear system (incl control) is stable nearby

Jacobilan linearization matrix

on . 9K
011 ox,
c')x(.,) ° -
0 fm O fm
| 8331 8:13n (e, 10)

WA/ UNIVERSITY of WASHINGTON 45

Example: Stability Analysis of Inverted Pendulum

System dynamics

dz _

T2
d¢ |sinz) —yzg]’

Equilibria: where x = [8] > X, =

0
Linearize to assess stability: 6_f =
X

0
A:—f|:01
ox Y I —y

use Zl=x1—xle=x1—7t, Z2=XZ

—) (=)

+rk, k=0, 1, 2, 3...
0

_ ¥ o -
ox; Ox,) 1
o, on | [cos X —y]
0x; 0x,

Upward equilibria: x;, = £ 271'](,_ k = O,_l, 2, 3...

1 1
eigenvalues: 1 = —§7zl: 5\/4 + 73

for y = 0.1, 1=(0.95, —1.05) — unstable

Downward equilibria: x, =7 27k, k=0, 1, 2, 3...

=> 7 =Az

eigenvalues: A = —%15: %\/ —4 2

for y =0.1, A=(—0.05+i, —0.05—i) = stable

example 2: matrix representation of a linear system

u(?)

q>

q

ki ka k3

>

Model: rigid body physics

® Sum of forces = mass *

acceleration
e Hooke’s law: F' = k(x — X,oq)

® Viscous friction: F =c v

q1
q2
ko k1
—(612 — 611) — —q1
m
(= 02) 2o 1)~ =
q2 m d2 — q1 Q_

“State space form”

migp = kz(CI2 — Cll) — k11
maoGs = k3(u — q2) — ka(q2 — q1) — cgo

HHHHHHHH]

Matrix representation:

x = Ax + Bu

0

0
ki + k,

m
k;

m

y=[1 1 0 0]x=Cx

k

m
ky, + k;

m

p—

0

07 o
1 0
0
Olx+]0 |u
k3
0 m.

47

State Space Control Design Concepts

System description: single input, single output system (MIMO also OK)

= f(x,u) xr € R", 2(0) given
y = h(x) ueR, yeR

Stability: stabilize the system around an equilibrium point
e Given equilibrium point z. € R" | find control “law” u = a(x)
such that

lim x(t) = z. for all z(0) € R"

t— 00

e Often choose x. so that y. = /(x.) has desired value r (constant)

Reachability: steer the system between two points
e Given 7,.2r € R" find an input u(#) such that

r = f(x,u(t)) takes x(tg) = 2o — (1) = x5

Tests for Reachability

r = Ax + Bu r € R™, (0) given

T
x(T)=ex. + [e’ ™ Butt)dt
y=~Cux uelR, yelR () ! lo)

Thm Alinear system is reachable if and only if the n x n reachability matrix

[B AB A2B ... An—lB]
Note: also called
Is full rank. “controllability” matrix

Remarks
[Very Simple test : control.ctrb(a,B) and check rank with numpy. linalg.matrix rank()

e [f this test Is satisfied, we say “the pair (A,B) is reachable”

State space controller design for linear systems

ir=Ar+Bu x € R"™ x(0) given ! o
: : ! (0) x(T) = eATxO + f e)Bu(t)dt
=0

y=Cux u€eR, yeR
Goal: find a linear control law # = -K x ~ Controller ‘ Process
such that the closed loop system r | — i—fi\ % | 3= A+ B
r=Ar+ Bu=(A— BK)zx ' v y=Cx+Du
is stable at x = 0 (assumes x are coordinates e L |
. X

relative to location of equilibrium)

e Stability based on eigenvalues = use K to make eigenvalues of (4 - BK) stable

e Can also link eigenvalues to performance (eg, initial condition response)
¢ Question: when can we place the eigenvalues anyplace that we want?

Theorem The eigenvalues of (4 - BK) can be set to arbitrary values if and only if the
pair (4, B) is reachable.

Next: one way to choose K

