ME 586: Biology-Inspired Robotics

University of Washington, Prof. Sawyer B. Fuller

Problem Set 4 (updated to fix error in pendulum dynamics 2025.02.23 )

Goals: familiarize you with basics of using a Kalman Filter to estimate and control the state of a flying
robot in simulation.

Required Reading:

e Optimization-Based Control by Richard M. Murray, Chapter 6: Kalman Filtering. See also Chapter 5
for a review of random variables.

Optional reading:

e Koenderink1987, “Facts on Optic Flow,” Biological Cybernetics 1987 (on the course web page) presents
a derivation of optic flow (slightly different than in class).

o Greiff2017, “Modelling and Control of the Crazyflie Quadrotor for Aggressive and Autonomous Flight
by Optical Flow Driven State Estimation,” M. Greiff, Master’s thesis, Lund University, 2017, provides
additional information about the nonlinear, Extended Kalman Filter used on the Crazyflie. link

1. State estimation using a Kalman Filter

The Kalman Filter can estimate the state of the system using sensor readings (typically fewer in
number than the size of the state), and a model of the dynamics. Given a dynamical system excited
by zero-mean process noise d and measurement noise n,

g = Agq+ Bu+Gd
y = Cqg+n

with covariances E{dd" } = Qy = Q% >0, E{nn”} = Ry = R% > 0, a Kalman Filter consists of an
observer gain matrix L such that the “state estimation dynamics”

q=Aq+ Bu+ Ly —Cq)

produces a state estimate ¢ that minimizes the expected squared error using the sensor measurements
y. The quantity y — C'q represents the error between the current estimate and the sensor readings,
which the filter uses to correct its estimate of the full state. Only if the system is observable can the
full state be estimated.

In this problem you will write a Kalman Filter to estimate (but not control) the state of nonlinear
downward-hanging pendulum dynamics using a noisy measurement of the angle of the pendulum. The
dynamics of the pendulum are given by

ml?6 = —mglsinb + u + 74,

where m is the mass of at the end of the pendulum, 6 is the angle of the pendulum with respect to
vertical, [ is the length of the (massless) rod that connects the mass to the pivot at the top, and u
is an input torque. 74 is an unknown disturbance torque acting on the system. A sensor measures 6
according to a measurement 6,, = 6 + ng, where ny is a stationary, zero-mean, Gaussian-distributed
variable with standard deviation oyg.

(a) Write the dynamics as a state-space nonlinear function, and provide the A, B, C, and D matrices
of the system linearized at § = 0. Show that the system is observable.


https://fbswiki.org/wiki/index.php/Supplement:_Optimization-Based_Control
http://www.cds.caltech.edu/~murray/books/AM08/pdf/obc-kalman_12Feb2023.pdf
http://lup.lub.lu.se/student-papers/record/8905295/file/8905299.pdf

(b) To formulate a Kalman Filter, the system must have imperfect (noisy) sensors and may optionally
be excited by a non-zero disturbance. Provide the G matrix corresponding to excitation by the
disturbance torque 74 given in the equation above.

(c) Write a simulation of this system’s nonlinear dynamics, and implement a Kalman Filter to estimate
its state from measurements 6,, (note: this problem entails estimation, but not control). If you
are stuck, it may be helpful to consult the file me586_example_kalman_estimator.ipynb on the
software _examples section of the course web page for an example implementation of a Kalman
Filter on a different system. Please use the following constants:

m | 0.1 kg
l 1m
og | 0.1 rad

Note: estimating the standard deviation o4 of the disturbance noise 74 is difficult in practice, so
in this problem you will instead use it as a tuning knob to achieve desired performance.

(d) For an initial angle of # = 1 rad, your Kalman filter should follow the true state of the pendulum
relatively well. Provide a plot in your Jupyter notebook. Then, in a subsequent cell, re-simulate
the system with an initial condition of 8 = 2 rad.

(e) Why does a larger excursion result in larger error in your Kalman Filter estimate?
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Figure 1: Sensors of the quad-rotor Crazyflie with the “Flowdeck” sensor.

2. State estimation and LQG control of a 2D simulated quadrotor

A complete Linear Quadratic Gaussian (“LQG”) control system consists of an LQR controller and
a “Kalman Filter.” You will implement an LQG controller for 2D quadrotor dynamics for a Crazyflie
equipped with a “flowdeck” sensor board.

To implement a Kalman Filter, we must first ascertain whether our system is observable at equi-
librium. To do that we must linearize the observation model. The onboard gyroscope measures angular
velocity, providing a measurement w,,, the time-of-flight sensor provides a measurement the distance
to the surface below the helicopter 7,,, and the optic flow sensor provides an optic flow measurement
Q. , according to the following models

Wm = wWHng

Tm — T +MNy
ft/

Qe = Q+n,=w——+n,,
T


https://faculty.washington.edu/minster/bio_inspired_robotics/software_examples/

where each n corresponds to noise added to the sensor reading, which we assume is zero-mean Gaussian
white noise. The quantities 2’ and ¢’ are velocities given in body-attached coordinates, and are the
components of the velocity vector v/ = RTv. These quantities are depicted in Figure 1.

(a)

(b)

For the downward-oriented optic flow sensor, find the optic flow as a function of your state 2 =
Q8y, wy, z, , z, 2). To do this you will need to find the relation for the distance r to the ground
(as a function of 6, and z) as shown in Figure 1.

Now suppose the robot is hovering near equilibrium near the desired height z4, that is, ¢ =
[0y, wy, x, &, z, 2T =10, 0, 0, 0, 24,0]". Show that the linearization of the nonlinear observation
model y(q) = [w, r, Q)T at equilibrium is given by the observation matrix

Show in your notebook that with the A matrix derived in the previous problem set, that such a
system is not observable by computing the observability matrix and its rank.

The reason for this is that the optic flow sensor does not measure position, only velocity, meaning
that the state x is not observable in the strict sense. The math that calculates the gains L of
a Kalman filter, however, requires that the system be observable. So we will instead create a
“reduced” linearized model of our system that does not include its non-observable x-position. The
pair (A,,C,) of these reduced matrices are observable, and are given by

01 0 0 0
00 0 0 0 01 0 00

A.=1]g 0 =b/m 0 0 |, C.,=1]0 0 0 1 0
o0 0 0 1 01—%00
00 0 0 —bm

The matrix G specifies how disturbance noise d enters the system. This can be set to the identity
matrix, but it typically is set to represent a realistic model for what noise might enter the system.
Here, we will assume that there are three sources of disturbance arising from wind currents: a)
force in the x-direction, b) force in the z-direction, and c) rotational torque around the y-axis.
Show that if the disturbance is specified in units of [Nm]| for torque and [N] for force, then G, is
given by

= O

o o3 o o
3Sro o oo
ooog

In the Jupyter notebook me586_2d_crazyflie_simulator_LQG.ipynb on the software examples
section of the course webpage, we will use an estimator that is augmented by adding a row of zeros
to the L matrix on the row corresponding to the x position state in the full system. Having a
zero row in L like this means that the estimator applies corrections to all of the observable states,
while not applying any corrections to &, which is not observable. But we will use our dynamics
model to still provide a prediction of Z that comes from numerically integrating the velocity. This
estimate will slowly drift from its true value due to sensor noise, but represents our “best guess”
of position that we will use for feedback control.

Finish implementation of the Kalman Filter (LQE estimator) by filling in missing elements (be-
tween comments with three ###’s.) You will need to add an extra row (in the right location) to
your GG, matrix as well. A suggested LQR controller is also implemented that does not need to
be changed. As in the previous problem, the size of the sensor noise is known but the disturbance
noise size is much harder to measure and therefore becomes your “tuning knob.” Explore how


https://faculty.washington.edu/minster/bio_inspired_robotics/software_examples/

changing weights affects the behavior of the system, increasing or decreasing the weights in the
process noise matrix (Qx until you get reasonable estimator performance. Provide a plot in your
notebook that shows the system estimating the state of the system under control of an LQR con-
troller that is operating using feedback from the true state rather than the estimated state (this
is usually easier to get to work correctly).

Next, close the loop, giving your LQR controller the Kalman Estimate, and provide a plot showing
your results.

Tip: The Kalman filter has a lot of moving parts and can show erratic behavior if gains are
too high. One thing you can do to help isolate such problems is to reduce the time increment dt
of your simulation to get a more precise dynamics simulation.

Lastly, provide plots that show your system subject to the following effects and briefly (in a
sentence or two) explain:
i. What happens when the disturbance noise in the z-direction is much higher than the distur-
bance noise in the z-direction?

ii. Why does the position estimate have an error if the altitude is not exactly equal to z4? (such
as if you start above or below z4) Can you suggest an approach you could use to fix it?



