ME 586: Biology-Inspired Robotics

University of Washington
Prof. Sawyer B. Fuller

Problem Set 1

Goals: familiarize you with the basic elements of python and good software design, install necessary software, learn how to simulate a dynamic system of the form $\dot{\boldsymbol{q}}=\boldsymbol{f}(\boldsymbol{q}, \boldsymbol{u})$, and to linearize it for purposes of control. Your submission will be in the form of Python Jupyter notebook(s). Please also submit a PDF version of your notebook by using the print command in the web browser.

Required reading:

- Feedback Systems 2nd Ed. by Astrom \& Murray, Chapter 6, section 6.4: Linearization.
- Braitenberg1984, chapters 1-4, available under the papers section of the course website.

Additional resources about Python:

- Comparison of MATLAB and Python's Numpy package: https://docs.scipy.org/doc/numpy/user/numpy-
for-matlab-users.html\#table-of-rough-matlab-numpy-equivalents.
- Online tutorial of python basics: https://www.programiz.com/python-programming/tutorial.

1. Python and Jupyter notebook installation for Windows or Mac (600 MB download).
(a) Install Anaconda (a scientific Python distribution) by downloading and running the installer here https://www.anaconda.com/products/individual (64-bit version recommended, 500 MB download)
(b) Install numerical and control systems packages by running the command in a terminal (on Windows, run the program "Anaconda prompt." On a Mac, open Terminal.app.)
conda install -c conda-forge control slycot
(50 MB download)
(c) Run the command jupyter notebook. A tab will open up in your browser. Navigate the file listing to where you want to create a new notebook and click "new"... "Python 3 notebook" near the top right of the page.

2. Python and simulation.

(a) Lists and Numpy arrays vs. MATLAB.

When Python was first created in the 1990's, it came with an array type called a "list." Lists can hold any type of variable. For example, [5, 32.3, 'asdf'] is an acceptable list. Later, a numerical array system called Numpy was written. Numpy arrays can only hold one type of variable, usually numbers, but unlike lists, they allow for math operations to be performed on the array as a whole. Numpy arrays are comparable to MATLAB matrices; lists are comparable to MATLAB cell arrays.
i. To compare lists and Numpy arrays, write the two functions described below using the Python def command. As an example, add_two_list ([1, 3, 5]) should return [3, 5, 7]. (Hint: the Numpy version should be much shorter).

- add_two_list(input_list) that adds 2 to every element in a list of numbers, and
- add_two_array (input_array) that does the same for a Numpy array.
i. Another difference with MATLAB is that it is possible for Numpy arrays to be one-dimensional. In MATLAB, the transpose of a one-dimensional row-vector is a column vector, but this is is not the case for 1D Numpy array. Provide at least one means to convert a one-dimensional Numpy array A into a two-dimensional column vector. (Note: A.T-taking the transpose of a 1D row array - does not work!)
(b) Consider the following dynamical system:

$$
\begin{aligned}
\dot{q}_{1} & =a q_{1}-b q_{1} q_{2} \\
\dot{q}_{2} & =b q_{1} q_{2}-c q_{2}
\end{aligned}
$$

where $q_{1}, q_{2} \geq 0$ and $a, b, c>0$ are positive constants.
i. Find all equilibrium points and assess the stability of the linearized system at those points: are they stable, marginally stable, or unstable?
ii. Next, choose arbitrary a, b, c values and simulate the response of this system for a few different initial conditions. Simulation cannot tell us in general if the nonlinear system is stable, but it can provide insight into its behavior.

To simulate this system on a digital computer, it is necessary to approximate its behavior by calculating how it changes over small increments of time ΔT. The simplest approximation and assume that \boldsymbol{f} is constant during the interval ("Euler integration"). With this approximation, the state \boldsymbol{q} changes by $\Delta T \dot{\boldsymbol{q}}$ after each time increment. Therefore the way \boldsymbol{q} evolves with time can be written as an iterative computation in which, at each time instant $t=k \Delta T$ (where k is an integer), the state is updated by

$$
\boldsymbol{q}_{t+\Delta T}=\boldsymbol{q}_{t}+\Delta T \dot{\boldsymbol{q}}_{t}=\boldsymbol{q}_{t}+\Delta T \boldsymbol{f}(\boldsymbol{q})
$$

\boldsymbol{q}_{0}, the initial condition, must be specified. In your Jupyter notebook, use Matplotlib to plot its response in $2 \mathrm{D}\left(q_{1}\right.$ vs. $\left.q_{2}\right)$ for a few different initial conditions \boldsymbol{q}_{0}. In the lecture slides is an example of a simulation you may want to use as a starting point, including an example for how to write your function f.

3. Simulating a Braitenberg vehicle with input.

Figure 1: Braitenberg vehicle.

Figure 1 above shows a "Braitenberg vehicle" as described in Braitenberg1984 (assigned reading). To simulate this robot, you will use a state consisting of position and orientation, $\boldsymbol{q}=[x, y, \theta]^{T}$. The vehicle's wheels are connected in such a way that they spin with a speed that is proportional to the

Figure 2: Flow of information. Note that the robot only receives readings from its sensors and does not know, for example, its position.
sensor reading, resulting forward velocity on each side of the robot. If the net forward velocity (the average of the two wheel velocities) is v, we can write that the state evolves according to

$$
\dot{\boldsymbol{q}}=\left[\begin{array}{c}
v \cos \theta \tag{1}\\
v \sin \theta \\
\dot{\theta}
\end{array}\right]
$$

Here, the system input is $\boldsymbol{u}=\left[v_{l w}, v_{r w}\right]^{T}$, which are the speeds of the left and right wheels, respectively. Note: these speeds refer to the rate of forward motion of the vehicle in $[\mathrm{m} / \mathrm{s}]$ at the left and right sides of the robot due to the wheels rotating, but are not the angular velocities of the wheels themselves. Skeleton code to simulate a robot performing these dynamics is provided in the software_examples section of the course web page in me586_braitenberg.ipynb. In addition to performing the iteration simulation, the software includes a number of functions that compute various aspects of the simulation (Figure 2). In this exercise, you will implement vehicles 2 a and 2b, COWARD and AGGRESSIVE, as well as vehicle 4.
(a) The function robot_dynamics in that file computes $\dot{\boldsymbol{q}}$ (Equation 1). Please update it to include these dynamics (filling in missing parts between the \#\#\#'s). Next, update the function environment so that it correctly computes the distance from the light source to the robot's sensors. For these robots, you must compute distances to the light source for two sensors placed on either side of the robot. Note that your code must calculate where the light sensors are by computing where the vehicle is and how it is oriented (by using its state). You have some flexibility to decide where on the vehicle the light sensors are (e.g. front or middle), but they must be on the sides somewhere to get the desired behavior. Lastly, you must implement light_response, which causes the speed of your robot's two wheel velocities to vary in inverse proportion to the distance to the light source. Note that your dynamics must incorporate the ability of the robot to rotate $(\dot{\theta} \neq 0)$ because of a difference in velocity of your two wheels. Knowing the robot's width and wheel speed, you can compute its rotation rate.
(b) Next, you will implement vehicle 4. For this robot, you will need to implement an additional feature in your vehicle 2 code in the light_response function. Your new function will produce a non-monotonic wheel velocity response to an input light reading intensity I, where I is inversely proportional to the distance to the light source. One possible function is a Gaussian function of I that varies according to

$$
u=e^{-\frac{(I-\mu)^{2}}{\sigma^{2}}}
$$

where μ and σ are the center and width of the Gaussian function, respectively. By adjusting μ and σ, see if you can get this robot to perform some sort of interesting motion around the light source. Note: you may discover that his robot's behavior can be very tricky to reason about! You are also invited to explore other functions, but this is not required.

Submit a Jupyter notebook that includes plots showing the motion of vehicles 2a and 2 b in response to the light source, as well the behavior of your vehicle 4 (you may add new cells that implement the new behavior as new functions so that it all fits on a single notebook, or submit multiple notebooks).

