
ME 586: Biology-Inspired Robotics
University of Washington
Prof. Sawyer B. Fuller

Problem Set 1

Goals: familiarize you with the basic elements of python and good software design, install necessary
software, learn how to simulate a dynamic system of the form q̇ = f(q,u), and to linearize it for purposes
of control. Your submission will be in the form of Python Jupyter notebook(s). Please also submit a PDF
version of your notebook by using the print command in the web browser.

Required reading:

• Feedback Systems 2nd Ed. by Astrom & Murray, Chapter 6, section 6.4: Linearization.

• Braitenberg1984, chapters 1–4, available under the papers section of the course website.

Additional resources about Python:

• Comparison of MATLAB and Python’s Numpy package: https://docs.scipy.org/doc/numpy/user/numpy-
for-matlab-users.html#table-of-rough-matlab-numpy-equivalents.

• Online tutorial of python basics: https://www.programiz.com/python-programming/tutorial.

1. Python and Jupyter notebook installation for Windows or Mac (600 MB download).

(a) Install Anaconda (a scientific Python distribution) by downloading and running the installer here
https://www.anaconda.com/products/individual (64-bit version recommended, 500 MB down-
load)

(b) Install numerical and control systems packages by running the command in a terminal (on Win-
dows, run the program “Anaconda prompt.” On a Mac, open Terminal.app.)
conda install -c conda-forge control slycot

(50 MB download)

(c) Run the command jupyter notebook. A tab will open up in your browser. Navigate the file
listing to where you want to create a new notebook and click “new”... “Python 3 notebook” near
the top right of the page.

2. Python and simulation.

(a) Lists and Numpy arrays vs. MATLAB.

When Python was first created in the 1990’s, it came with an array type called a “list.” Lists
can hold any type of variable. For example, [5, 32.3, ’asdf’] is an acceptable list. Later,
a numerical array system called Numpy was written. Numpy arrays can only hold one type of
variable, usually numbers, but unlike lists, they allow for math operations to be performed on the
array as a whole. Numpy arrays are comparable to MATLAB matrices; lists are comparable to
MATLAB cell arrays.

i. To compare lists and Numpy arrays, write the two functions described below using the Python
def command. As an example, add_two_list([1, 3, 5]) should return [3, 5, 7]. (Hint:
the Numpy version should be much shorter).

• add_two_list(input_list) that adds 2 to every element in a list of numbers, and
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• add_two_array(input_array) that does the same for a Numpy array.

i. Another difference with MATLAB is that it is possible for Numpy arrays to be one-dimensional.
In MATLAB, the transpose of a one-dimensional row-vector is a column vector, but this is is
not the case for 1D Numpy array. Provide at least one means to convert a one-dimensional
Numpy array A into a two-dimensional column vector. (Note: A.T—taking the transpose of a
1D row array—does not work!)

(b) Consider the following dynamical system:

q̇1 = aq1 − bq1q2

q̇2 = bq1q2 − cq2

where q1, q2 ≥ 0 and a, b, c > 0 are positive constants.

i. Find all equilibrium points and assess the stability of the linearized system at those points:
are they stable, marginally stable, or unstable?

ii. Next, choose arbitrary a, b, c values and simulate the response of this system for a few different
initial conditions. Simulation cannot tell us in general if the nonlinear system is stable, but it
can provide insight into its behavior.

To simulate this system on a digital computer, it is necessary to approximate its behavior by
calculating how it changes over small increments of time ∆T . The simplest approximation and
assume that f is constant during the interval (“Euler integration”). With this approximation,
the state q changes by ∆T q̇ after each time increment. Therefore the way q evolves with time
can be written as an iterative computation in which, at each time instant t = k∆T (where k
is an integer), the state is updated by

qt+∆T = qt + ∆T q̇t = qt + ∆Tf(q)

q0, the initial condition, must be specified. In your Jupyter notebook, use Matplotlib to plot
its response in 2D (q1 vs. q2) for a few different initial conditions q0. In the lecture slides is
an example of a simulation you may want to use as a starting point, including an example for
how to write your function f .

3. Simulating a Braitenberg vehicle with input.
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Figure 1: Braitenberg vehicle.

Figure 1 above shows a “Braitenberg vehicle” as described in Braitenberg1984 (assigned reading). To
simulate this robot, you will use a state consisting of position and orientation, q = [x, y, θ]T . The
vehicle’s wheels are connected in such a way that they spin with a speed that is proportional to the
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Figure 2: Flow of information. Note that the robot only receives readings from its sensors and does not
know, for example, its position.

sensor reading, resulting forward velocity on each side of the robot. If the net forward velocity (the
average of the two wheel velocities) is v, we can write that the state evolves according to

q̇ =

 v cos θ
v sin θ

θ̇

 . (1)

Here, the system input is u = [vlw, vrw]T , which are the speeds of the left and right wheels, respectively.
Note: these speeds refer to the rate of forward motion of the vehicle in [m/s] at the left and right sides
of the robot due to the wheels rotating, but are not the angular velocities of the wheels themselves.
Skeleton code to simulate a robot performing these dynamics is provided in the software_examples
section of the course web page in me586_braitenberg.ipynb. In addition to performing the iteration
simulation, the software includes a number of functions that compute various aspects of the simulation
(Figure 2). In this exercise, you will implement vehicles 2a and 2b, coward and aggressive, as well
as vehicle 4.

(a) The function robot_dynamics in that file computes q̇ (Equation 1). Please update it to in-
clude these dynamics (filling in missing parts between the ###’s). Next, update the function
environment so that it correctly computes the distance from the light source to the robot’s sen-
sors. For these robots, you must compute distances to the light source for two sensors placed on
either side of the robot. Note that your code must calculate where the light sensors are by comput-
ing where the vehicle is and how it is oriented (by using its state). You have some flexibility
to decide where on the vehicle the light sensors are (e.g. front or middle), but they must be on
the sides somewhere to get the desired behavior. Lastly, you must implement light_response,
which causes the speed of your robot’s two wheel velocities to vary in inverse proportion to the
distance to the light source. Note that your dynamics must incorporate the ability of the robot to
rotate (θ̇ 6= 0) because of a difference in velocity of your two wheels. Knowing the robot’s width
and wheel speed, you can compute its rotation rate.

(b) Next, you will implement vehicle 4. For this robot, you will need to implement an additional
feature in your vehicle 2 code in the light_response function. Your new function will produce a
non-monotonic wheel velocity response to an input light reading intensity I, where I is inversely
proportional to the distance to the light source. One possible function is a Gaussian function of I
that varies according to

u = e−
(I−µ)2

σ2 ,

where µ and σ are the center and width of the Gaussian function, respectively. By adjusting µ
and σ, see if you can get this robot to perform some sort of interesting motion around the light
source. Note: you may discover that his robot’s behavior can be very tricky to reason about! You
are also invited to explore other functions, but this is not required.

Submit a Jupyter notebook that includes plots showing the motion of vehicles 2a and 2b in
response to the light source, as well the behavior of your vehicle 4 (you may add new cells that
implement the new behavior as new functions so that it all fits on a single notebook, or submit
multiple notebooks).
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