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* Full 3D instead of 2D
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Problem Set 5

Inspired by Decroon2016%, which was inspired by
observation of honeybee landing in Srinivasan96*
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Nice example of robotics: not just dynamics,
not just vision, but the confluence of both
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Feedback law demo: v, ; = K

*available on course webpage



Paper 4 intro. First, a history of neural nets

LeCun, Y., et al. (1989). Backpropagation applied to
handwritten zip code recognition. Neural

computation, 1(4), 541-551. 2000
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Your instructor took a course 999

on neural networks.
Krizhevsky, A., Sutskever, |. & Hinton, G.
Why would anybody do that? o " ’
y wou y y ImageNet classification with deep
S0 D UL I Eane convolutional neural networks. NIPS 25 1090-
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Paper 4 Intro

doi:10.1038/naturel4236

Human-level control through deep reinforcement
learning

Volodymyr Mnih'*, Koray Kavukcuoglu'*, David Silver'*, Andrei A. Rusu', Joel Veness', Marc G. Bellemare', Alex Graves',
Martin Riedmiller', Andreas K. Fidjeland', Georg Ostrovski', Stig Petersen’, Charles Beattie!, Amir Sadik’, Ioannis Antonoglou’,
Helen King', Dharshan Kumaran', Daan Wierstra', Shane Legg' & Demis Hassabis!

Deep Neural Network

Input layer Hiddenlayer1 Hiddenlayer2  Output layer

A deep network approximates

State space s: which cell _
“Q function”

Action space a: which arrow direction
Learned “Q function” encodes best path

Paper 4 is about invention of “Deep reinforcement learning” to play 70’s games.
s is state of pixels on the screen, a is joystick action, reward comes from the score
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https://www.youtube.com/watch?v=zxCTujXxPhc

