Scattering of identical spin 0 bosons

\[\vec{r}_1 \rightarrow \vec{r}_1' \text{ or } \vec{r}_2 \rightarrow \vec{r}_2' \text{ by } b \rightarrow \pi^+ \]

Review Scatt results For distinguishing particles \(r \rightarrow \infty \)

\[\psi'(\vec{r}) = \eta \left[\frac{\epsilon (\vec{k}_2 - \vec{v} \times \vec{k}_1) f(\vec{k}_1, \vec{k}_2)}{\sqrt{r}} \right] \]

\[F = \vec{r}_1 - \vec{r}_2 \]

\[k' = k - \frac{\vec{v}}{c} \cdot \vec{k} \]

\[k' \cdot k = \cos \theta - \frac{k^2}{2} \]

\[\frac{d\psi'}{dr} = \frac{\psi''}{d\psi / d\Omega} = \left| \frac{f}{f''} \right|^2 \]

For identical bosons spin 0

\[\psi(\vec{r}) \rightarrow \psi(\vec{r}) + \psi(\vec{r}') \]

\[+ \vec{r} \rightarrow - \vec{r} \quad \vec{r}' \rightarrow - \vec{r}' \]

\[f(\vec{k}_1, \vec{k}_2) \Rightarrow f(\vec{k}_1, \vec{k}_2) + f(-\vec{k}_1, \vec{k}_2) \]

\[= f(\theta) + f(\pi - \theta) \]
\[\frac{d\sigma^3}{d\ell} = \left(|f(0)|^2 + |f(r-\theta)|^2 \right) \text{ classical identity} \]

\[+ 2 \Re f(\theta) f^*(r-\theta) \]

Low energy - \(f(\theta) = \text{constant} \)

\[\text{no Coul} \]

\[\frac{d\sigma}{d\ell} = 4 \frac{d\sigma}{d\ell} \]
Physics example: Bromley et al. see GoH Fread p. 344

Two 12C nuclei:

Charge = $6e$

$E_{cm} = 5$ MeV

Carbon 12 has spin 0.

Treat as elem. particle.

1) Takes 16 MeV to break it up.

2) Coulomb field is smoothly varying over nuclear size \propto just over nuclear size \Rightarrow C is scattered.

3) 12C distance of closest approach:

$$\frac{2 \times 3 \times 6 e^2}{D} = 5 \text{ MeV}$$

$$D = \frac{5}{1.44 \text{ MeV fm}} = 3.6 \times 10^{-12} \text{ fm} = 10 \text{ fm}$$

$$r_{cm} = \varnothing 2.5 \text{ fm}$$

16O

Electrons cancelled and far away.
\[
\left(-\nabla^2 + V_c \right) \psi = \frac{\hbar^2}{2\mu} \psi
\]

\[
V_c = \frac{2n^2 e^2}{r}
\]

\[
\nabla^2 + \frac{k^2}{r^2} + \frac{\kappa^2 e^2}{2\mu} \frac{2n}{r} \psi = 0
\]

\[
\psi = \frac{2n^2 e^2}{\kappa} \quad \hbar = \mu \kappa
\]

\[
\nabla^2 - \frac{k^2}{r^2} \psi = 0 = 0 \quad \Rightarrow \nabla^2 + 1 - \frac{k^2}{r^2} = \psi
\]

\[
E_{cm} = 5 \text{ MeV} = \frac{\hbar^2}{m} = \frac{2\mu^2 v^2}{2\mu} = \frac{2\mu v^2}{2} \frac{F_{2}(p)}{G_{2}(p)}
\]

\[
\frac{\mu}{2} = \frac{M_{e}}{2}
\]

\[
u^2 = 10 \text{ MeV}
\]

\[
u^2 = \frac{4.5 \text{ MeV}}{12,940 \text{ MeV}} = 0.042
\]

\[
\psi = \frac{36}{137} \left(\frac{1}{0.042} \right) > 6.3 \quad \sin \left(\frac{\pi \theta}{2} \right) = \cos \theta/2
\]

\[
f_{c} = \frac{\psi}{2 \times \sin \theta}
\]

\[
d\alpha = \frac{\psi}{\sinh} \left[\frac{1}{\sinh} + \frac{1}{\cosh} + \frac{2 \Re}{\sin \theta \cos \theta} \right] \left(\frac{1}{\sinh} + \frac{1}{\cosh} + \frac{1}{\sin \theta \cos \theta} \right) \cos \left(2 \times \arctan \theta \right)
\]
\[\frac{d\sigma}{d\Omega} \]

\[20 \ 40 \ 60 \ 80 \ 100 \ 120 \]

Bromley et al. PRL 4, 365 (1960)

\(^{12}C + ^{12}C \) elastic

5 MeV cm
\[
f(\theta) = \frac{1}{2} \sum e^{\theta} \text{trunc} \quad \text{Pe} \text{coss}a \quad (2021)
\]

Now \[F(\theta) + f(\theta, t_0) \quad \text{Pe} \text{coss}a \text{dil} \text{or Pe} \text{coss}a \]
\[
\text{Pe} \text{coss}a \text{dil} \quad z = (\text{-}1)^2
\]
\[
\frac{\partial}{\partial t} \quad F(t) = \sum e^{\theta} \text{trunc} \quad \text{Pe} \text{coss}a \text{dil}
\]
\[
\frac{\partial}{\partial t} \quad \frac{4}{\partial \theta} \quad \sum e^{\theta} \text{trunc} \quad \text{Pe} \text{coss}a \text{dil}
\]

\[\text{ON L4 even} \]
Exclusion Principle

Consider many electron atom

\[H = \sum \frac{p_i^2}{2m} - \sum \frac{2e^2}{r_i} + \frac{1}{2} \sum \frac{e^2}{r_{ij}} \]

(First approx - neglecting hyperfine splitting)

We will want to quant symmetrise but first must solve Schrodinger equation - dynamical aspect

Each electron feels attraction pull of towards the nucleus (Z+1 protons) but also a repulsion force interaction due to (Z-1) electrons

If one electron is far from atom \(Z \)

\[\text{feels a potential } - \frac{e^2}{r_i} \quad (r_i > r_j) \]

At short distances there is a complex problem
\[H = H + V - U \]
\[= \sum_{i=1}^{2} \frac{p_i^2}{2m} - \sum_{i<j} \frac{2e^2}{\epsilon_{ij}} + \sum U_0 + \left(\sum \frac{e^2}{r_i} - U \right) \]

\[H_0 = \sum \frac{p_i^2}{2m} - \sum \frac{2e^2}{\epsilon_{ij}} + U_0 \]

\[H = H_0 + V, \quad V = \left(\sum \frac{e^2}{r_i} - U \right) \]

\[H_0 = \sum_{i=1}^{2} \frac{p_i^2}{2m} \]

Eigenstates $|d\rangle$, $|e\rangle$, $|f\rangle$:

\[H_0 \begin{pmatrix} d \rangle \end{pmatrix} = \epsilon_d \begin{pmatrix} d \rangle \end{pmatrix} \]

Degeneracy: Q of 2 if complete filling

\[\Psi(n_1, n_2) \] represents n_1, n_2
There are Z^3 degenerate states

Take purely antisym. combination

3 body $Li(2+3) \quad 1s^1 1s^1 2p^2$

$$\left[\begin{array}{c}
<1 1d> <2 1\beta> <3 1\beta> \\
<2 1d> <1 1\beta> <3 1\beta>
\end{array} \right]$$

$$+ \left[\begin{array}{c}
<2 1d> <3 1\beta> <1 1\beta> \\
<1 1d> <2 1\beta> <1 1\beta>
\end{array} \right]$$

$$- \left[\begin{array}{c}
<3 1d> <2 1\beta> <1 1\beta> \\
<1 1d> <3 1\beta> <2 1\beta>
\end{array} \right]$$

$$- \left[\begin{array}{c}
<1 1d> <3 1\beta> <2 1\beta>
\end{array} \right] \frac{1}{\sqrt{6}}$$

$$\begin{array}{c}
<1 1d> <2 1\beta> <3 1\beta> \\
<1 1\beta> <2 1\beta> <3 1\beta>
\end{array}$$

$\sqrt{6}$

Slater Det

What to do for bosons?

In the case for any number of elect

contains 2 particle same state

Two same spin det are same

$\det = 0$

Pauli exclusion principle
Examples in Class

\[\psi_2 = \frac{1}{\sqrt{2}} (|11\rangle \langle 22| \beta - |22\rangle \langle 11| \beta) \]

\[\langle \psi_2 | H_0 | \psi_2 \rangle = 3 \alpha + 3 \beta \]

\[\langle \psi_2 | \frac{e^2}{2} | \psi_2 \rangle = \langle \alpha \beta | v \alpha \beta \rangle \]

\[\gamma \]

\[- \langle \alpha \beta | v \alpha \beta \rangle \]

\[= \langle \alpha \beta | v \alpha \beta \rangle \]