PHYSICS 323 ELECTROMAGNETISM

April 21, 2020 Problem Set 3 These 4 problems are due in Canvas Tuesday, 28 April.Please put your name and section number on the first page of your solutions.

1. Review of Delta functions

(a) Show that the integral: $\int_0^{\pi} \delta(x - \cos x) dx = \frac{1}{1 + \sin x_0}$, where x_0 is the solution of the transcendental equation $x_0 - \cos x_0 = 0$. Then obtain a numerical answer.

(b) Show that $(\nabla^2 + k^2) \frac{e^{ik|\mathbf{r}-\mathbf{r'}|}}{|\mathbf{r}-\mathbf{r'}|} = -4\pi\delta(\mathbf{r}-\mathbf{r'})$

(c) The time-averaged electric potential of a neutral hydrogen atom is given by

$$V(r) = \frac{q}{4\pi\epsilon_0} \frac{e^{-\alpha r}}{r} (1 + \frac{\alpha r}{2}),$$

where q is the magnitude of the electronic charge and $\alpha^{-1} = a_0/2$, where a_0 is the Bohr radius. Find the charge distribution (continuous and discrete) that yields this potential and interpret your result.

2. Time dependent point charge

A time-dependent point charge q(t) at the origin $\rho(\mathbf{r}, t) = q(t)\delta(\mathbf{r})$ is fed by a current $J(\mathbf{r}, t) = -\frac{1}{4\pi}(\dot{q}/r^2)\hat{\mathbf{r}}$

(a) Show that charge is conserved by confirming that the continuity equation (5.29) is obeyed.

- (b) Determine the non-unique scalar and vector potentials in the Lorentz gauge.
- (c) Find \mathbf{E} and \mathbf{B}

3. Potentials and Gauges The Coulomb gauge, defined by $\nabla \cdot \mathbf{A} = 0$, is useful in atomic physics. The following questions refer to using the Coulomb gauge.

(a) Find the partial differential equation satisfied by the vector potential \mathbf{A} . This equation contains the scalar potential V.

(b) In your result for (a): eliminate the term containing V by separating the current density **J** into two terms $\mathbf{J} = \mathbf{J}_1 + \mathbf{J}_2$ where $\nabla \times \mathbf{J}_1 = 0$ and $\nabla \cdot \mathbf{J}_2 = 0$, so that the dependence on V is eliminated and the equation for **A** contains only \mathbf{J}_2 . The names for the separate currents are \mathbf{J}_1 is longitudinal component and \mathbf{J}_2 is transverse component. Thus **A** will depend only on \mathbf{J}_2

4. Current in a long-straight wire

(a) Suppose that a current in a long straight vertical wire carries a current that increases linearly with time: $I(t) = I_0 \frac{t}{\tau}$ where I_0 is a constant with dimension of current, and τ is a constant with dimensions of time. Find the electric and magnetic fields that are generated.

(b) Do the same for a sudden burst of current $I(t) = q_0 \delta(t)$.