PHYSICS 323: ELECTROMAGNETISM

23 April, 2019 Midterm 1 Solutions

Name: ______/20

1. Waves moving through a system with free electrons

Consider an electromagnetic wave of angular frequency ω moving through a medium that contains **free** electrons of charge q with a density n_e that is constant in space and time.

(a) (5) An electric field $\mathbf{E} = \mathbf{E}_0(\mathbf{r})e^{-i\omega t}$ of very long wavelength moves through the medium. Use Newton's equation to determine the current density induced by \mathbf{E} .

Use $\mathbf{F} = m \frac{d\mathbf{v}}{dt} = q\mathbf{E}$ to get $\frac{d\mathbf{v}}{dt} = q/m\mathbf{E}_0 e^{-i\omega t}$. Integrate over t to get $\mathbf{v}(t) = \frac{iq\mathbf{E}}{m\omega}e^{-i\omega t}$. Then $\mathbf{j} = qn_e\mathbf{v} = i\frac{n_e q^2\mathbf{E}_0}{m\omega}e^{-i\omega t}$.

(b) (5) Write Maxwell's equations for the electromagnetic wave that moves through the medium.

 $\boldsymbol{\nabla}\cdot\mathbf{E} = \frac{\rho}{\epsilon_0}, \, \boldsymbol{\nabla}\cdot\mathbf{B} = 0, \, \boldsymbol{\nabla}\times\mathbf{E} = -\frac{\partial\mathbf{B}}{\partial t}, \boldsymbol{\nabla}\times\mathbf{B} = \mu_0\mathbf{j} + \frac{1}{c^2}\frac{\partial\mathbf{E}}{\partial t}.$

(c) (5) Use Maxwell's equations to derive a wave equation for \mathbf{E} .

take $\nabla \times$ acting on Faraday's law so $\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\nabla^2 \mathbf{E}$. The last step is obtained from the constant nature of ρ here. The other side of the equation is $\frac{\partial}{\partial t} \nabla \times \mathbf{B} = -\frac{\partial}{\partial t} \mu_0 \mathbf{j} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$. Also $-\frac{\partial}{\partial t} \mu_0 \mathbf{j} = i\omega \mathbf{j} = -\frac{\mu_0 n_e q^2}{m} \mathbf{E}$. Then $-\nabla^2 \mathbf{E} + \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} + \frac{n_e \mu_0}{m} q^2 \mathbf{E} = 0$

(5) Find a condition on the value of ω such that the electromagnetic wave can propagate in this medium indefinitely.

Use $\mathbf{E}_0(\mathbf{r}) = e^{ikz}$ in the equation of the previous problem. Then get $k^2 - \omega^2/c^2 + \frac{q^2 n_e \mu_0}{m} = 0$. For propagation k must take on only real values, so $k^2 > 0$. Thus the condition on ω is that $\omega^2 > \frac{c^2 n_e \mu_0}{m} q^2$.

2. Triangular wave guide

A waveguide is constructed so that the cross section of the guide form a triangle with sides of length a, a and $\sqrt{2}a$ as in the figure. The walls are perfect conductors and $\epsilon = \epsilon_0$, $\mu = \mu_0$ inside the guide. Consider **only** TE electromagnetic waves, and B_z of the form $B_z(x, y, z, t) = f(x, y)e^{ikz-i\omega t}$.

/20

Score _

For a transverse electric wave (TE), $E_z = 0$.

(b) (5) State the explicit boundary conditions that f(x, y) must obey on each of the three sides of the waveguide.

The normal component of B_z must vanish on each boundary surface. As shown in class this means that $\mathbf{n} \cdot \nabla B_z = 0$ on every boundary surface. At x = 0, $\mathbf{n} = \mathbf{i}$, so $\frac{\partial f(x,y)}{\partial x} = 0$. At y = 0, $\mathbf{n} = \mathbf{j}$, so $\frac{\partial f(x,y)}{\partial y} = 0$. The other boundary is the line with a slope of 1. The line obeys the equation x = y. The unit normal here is $(-\mathbf{i} + \mathbf{j})/\sqrt{2}$, so for the line x = y, $-\frac{\partial f(x,y)}{\partial x} + \frac{\partial f(x,y)}{\partial y} = 0$.

(c) (5) Determine a set of functions, f(x, y), that obey the boundary conditions you wrote in part (b). Hint: Try a superposition of the square waveguide solutions

From the rectangular case shown in class, we should try $f(x, y) = B_0 \cos \frac{n\pi x}{a} \cos \frac{m\pi y}{a}$, with n, m integers greater than or equal to 0. This takes care of the boundary conditions at x = 0 and y = 0, but not the ones at x = y.

Following the hint, try $f(x,y) = B_0 \cos \frac{n\pi x}{a} \cos \frac{m\pi y}{a} + B_0 \cos \frac{m\pi x}{a} \cos \frac{ny\pi}{a}$. First take $-\frac{\partial f(x,y)}{\partial x} + \frac{\partial f(x,y)}{\partial y}$ and then **after** taking the derivatives set y = x. This gives $-\frac{\partial f(x,y)}{\partial x} + \frac{\partial f(x,y)}{\partial y} \rightarrow \frac{\pi B_0}{a} \left(n \sin \frac{n\pi x}{a} \cos \frac{m\pi x}{a} + m \cos n\pi x \sin \frac{m\pi x}{a} - m \sin \frac{m\pi x}{a} \cos \frac{n\pi x}{a} - n \cos \frac{m\pi x}{a} \sin \frac{n\pi x}{a}\right) = 0$

(d) (5) Determine the TE modes for which propagation is allowed for the given value of ω . The cutoff frequency for a TE mode defined by n, m is $\omega_{nm} = \frac{\pi}{ca}\sqrt{m^2 + n^2}$. The necessary values of ω obey $\omega > \omega_{n,m}$. Name:

 $_$ Score $_$

/20

3. Boundary value problem

A plane electromagnetic wave with frequency ω and wave number k propagates in the +z direction. For z < 0 the medium is air with $\epsilon = \epsilon_0$. For z > 0 the medium is lossy with $\epsilon = \epsilon_0$ and $\sigma > 0$ for **all** parts of this problem. For z > 0 Maxwell's equations can be manipulated to show that the electric field obeys the equation: $\nabla^2 \mathbf{E} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} - \mu_0 \sigma \frac{\partial \mathbf{E}}{\partial t} = 0$.

(a) (5) For z > 0 determine the relation between k^2 and ω .

Use the given partial differential equation with $\mathbf{E} = \mathbf{E}_0 e^{i(kz-\omega t)}$. This gives $-k^2 + \frac{\omega^2}{c^2} + i\mu_0\sigma\omega = 0$ so $k^2 = \frac{\omega^2}{c^2} + i\mu_0\sigma\omega$.

(b) (5) Find the limiting values of k for a very good conductor and a very poor conductor.

For a very good conductor $k^2 \approx i\mu_0 \sigma \omega$, so $k = \frac{(1+i)}{\sqrt{2}} \sqrt{\mu_0 \sigma \omega}$. For a very poor conductor $k = \sqrt{\frac{\omega^2}{c^2} + i\mu_0 \sigma \omega} = \frac{\omega}{c} \sqrt{1 + i\frac{c^2\mu_0\sigma}{\omega}} \approx \frac{\omega}{c} (1 + i\frac{c^2\mu_0\sigma}{2\omega})$ So $k \approx \frac{\omega}{c} + i\frac{\sigma}{2\epsilon_0 c}$

(c) (5) Find the depth (value of z) in the lossy medium such that the electromagnetic wave power is decreased by a factor of e^{-1} .

The electric field is damped by a factor $e^{-z \operatorname{Im}[k]} = e^{-z \frac{\sigma}{2\epsilon_0 c}}$ The power is \propto the absolute square of E, or $e^{-z \frac{\sigma}{\epsilon_0 c}}$. This means the the relevant depth is $\left[\frac{\epsilon_0 C}{\sigma}\right]$.

(d) (5) Find the amplitude of the transmitted electric field to the amplitude of the incident electric field for a very poor conductor.

The transmission coefficient T is given by the ratio of transmitted intensity to incident intensity. For z < 0 the wave is a sum of leftward and rightward going waves. For z > 0 there is only a rightward-going wave. The incident electric field amplitude is denoted as E. The reflected wave has an electric field amplitude E_R . The transmitted field has an amplitude E_T . The tangential components of \mathbf{E} must be continuous as z = 0. So $E_0 + E_R = E_T(1)$. The tangential components of $H = (B/\mu_0 \text{ here})$ must be continuous. So the boundary condition for H reads $\omega(E_0 - E_R) = (\omega + i\frac{\sigma}{2\epsilon_0\omega})E_T$ or $(E_0 - E_R) = (1 + i\frac{\sigma}{2\epsilon_0\omega})E_T(2)$. Adding eqns (1) and (2) gives $2E_0 = E_T(2 + \frac{i\sigma}{2\omega\epsilon_0})$ and

E_T	1
$\overline{E_0}$ –	$1 + \frac{i\sigma}{4\omega\epsilon_0}$