PHYSICS 322: ELECTROMAGNETISM

12 June, 2019 Final Exam Solution

Name: ______ Score _____/20

1. Waves moving through a system with free electrons

Consider an electromagnetic wave of angular frequency ω moving through a medium that contains **free** electrons of charge q with a *constant density*, n_e , (number of electrons per unit volume) that is constant in space and time.

(a) (6) An electric field $E = E_0(\mathbf{r})e^{-i\omega t}$ of very long wavelength, $\lambda \gg 1/n_e^{1/3}$, moves through the medium. Use Newton's equation to determine the current density induced by **E**.

Use $\mathbf{F} = m \frac{d\mathbf{v}}{dt} = q\mathbf{E}$ to get $\frac{d\mathbf{v}}{dt} = q/m\mathbf{E}_0 e^{-i\omega t}$. $E_0(\mathbf{r})$ can be considered to be a constant because of the long wavelength approximation. Then integrate over t to get $\mathbf{v}(t) = \frac{iq\mathbf{E}}{m\omega}e^{-i\omega t}$.

Then $\mathbf{j} = qn_e \mathbf{v} = i \frac{n_e q^2 \mathbf{E}_0}{m\omega} e^{-i\omega t}$.

(b) (6) Write Maxwell's equations for the electromagnetic wave that moves through the medium.

 $\boldsymbol{\nabla} \cdot \mathbf{E} = \frac{\rho}{\epsilon_0}, \, \boldsymbol{\nabla} \cdot \mathbf{B} = 0, \, \boldsymbol{\nabla} \times \mathbf{E} = -\frac{\partial \mathbf{B}}{\partial t}, \, \boldsymbol{\nabla} \times \mathbf{B} = \mu_0 \mathbf{j} + \frac{1}{c^2} \frac{\partial \mathbf{E}}{\partial t}.$

(c) (4) Use the equations of part (b) to derive a wave equation for **E**. take $\nabla \times$ acting on Faraday's law so $\nabla \times (\nabla \times \mathbf{E}) = \nabla (\nabla \cdot \mathbf{E}) - \nabla^2 \mathbf{E} = -\nabla^2 \mathbf{E}$. The last step is obtained from the constant nature of ρ here. The other side of the equation is $\frac{\partial}{\partial t} \nabla \times \mathbf{B} = -\frac{\partial}{\partial t} \mu_0 \mathbf{j} - \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2}$. Also $-\frac{\partial}{\partial t} \mu_0 \mathbf{j} = i\omega \mathbf{j} = -\frac{\mu_0 n_e q^2}{m} \mathbf{E}$. Then $-\nabla^2 \mathbf{E} + \frac{1}{c^2} \frac{\partial^2 \mathbf{E}}{\partial t^2} + \frac{n_e \mu_0}{m} q^2 \mathbf{E} = 0$

(d) (4) Find a condition on the value of ω such that the electromagnetic wave can propagate in this medium indefinitely. Use $\mathbf{E}_0(\mathbf{r}) = e^{ikz}$ in the equation of the previous problem. Then get $k^2 - \omega^2/c^2 + \frac{q^2 n_e \mu_0}{m} = 0$. For propagation k must take on only real values, so $k^2 > 0$. Thus the condition on ω is that $\omega^2 > \frac{c^2 n_e \mu_0}{m}q^2$. Name:

Score _

 $_{--}/20$

2. Relativistic kinematics

The threshold kinetic energy $T_{\rm th}$ in the laboratory (target particle at rest) for a given reaction is the minimum kinetic energy of the incident particle on a stationary target needed to make the reaction occur.

(a) (6) Calculate the threshold kinetic energy for the process of neutral pion production in a collision between a proton beam and a target proton (which is at rest) so the reaction is: $p + p \rightarrow p + p + \pi^0$. Take the proton mass to be M and the pion mass to be m_{π} . Four-momentum conservation says $-c^2 P_i^2 = -c^2 P_f^2$ with $P_{i,f}^{\mu}$ representing the four-momentum and i(f) representing the initial (final) state. $-c^2 P_i^2 = (E_L + Mc^2) - P_L^2 c^2$ with E_L the total Lab energy of the beam $E_L = T_L + Mc^2$ and P_L its momentum and T_L as kinetic energy. $-c^2 P_i^2 = 4Mc^2 + 2T_L Mc^2 = -c^2 P_f^2 = (2M + m_{\pi})^2$. The threshold energy is achieved when all particles in the final state are at rest. Solving the previous equation gives $T_L = m_{\pi}c^2 + \frac{m_{\pi}^2}{2M}c^2$

(b) (7) An unknown particle of mass M is found to decay into two particles of given mass and momentum m_1 , \mathbf{p}_1 and m_2 , \mathbf{p}_2 . The magnitude of the momenta of the two final particles and the angle θ between the two particles are measured. Determine the mass M in terms of the given quantities. Four-momentum conservation says $-c^2 P_i^2 = -c^2 P_f^2$. The unknown particle always has $-c^2 P_i^2 = M^2 c^4$ which is equal to $-c^2 P_f^2 = -c^2 (p_1 + p_2)^2$ where $p_{1,2}$ are four-vectors. $-c^2 (p_1 + p_2)^2 = (E_1 + E_2)^2 - c^2 (\mathbf{p}_1 + \mathbf{p}_2)^2 = E_1^2 - c^2 \mathbf{p}_1^2 + E_2^2 - c^2 \mathbf{p}_2^2 + 2E_1E_2 - 2c^2 |\mathbf{p}_1| |\mathbf{p}_2| \cos \theta$ so $M^2 = M_1^2 + M_2^2 + 2E_1E_2/c^4 - 2|\mathbf{p}_1| |\mathbf{p}_2| \cos \theta/c^2$, where $E_{1,2} = \sqrt{M_{1,2}^2 c^4 + \mathbf{p}_{1,2}^2 c^2}$

(c) (7) For the situation of (b) the particle of mass M is created in a lab with a kinetic energy of Mc^2 . Suppose it has a known lifetime of τ (in its rest frame). How far on average will it travel in the lab before decaying?

The travel time in the lab is $D = v\gamma(v)\tau$. The total energy is $2Mc^2 = Mc^2\gamma(v)$, so $\gamma = 2$. The speed of the particle is given by $\gamma = 1/\sqrt{1 - v^2/c^2}$, so $v/c = \sqrt{3}/2$. The distance travelled is $= \sqrt{3}/2c * 2 * \tau = \sqrt{3}c\tau$

Name: _

3. Four-Vector Potential

In a frame S, the vector potential **A** is given by $\mathbf{A} = A_0 \hat{\mathbf{z}} \exp(-r^2/R^2)$, where R is a given length and A_0 is a given potential strength, a constant with dimensions of Tm. The electric potential $V(\vec{r}, t) = 0$ in that frame.

(a) (7) Determine the charge density ρ in the frame S.

 $\left(\frac{1}{c^2}\frac{\partial^2}{\partial t^2} - \boldsymbol{\nabla}^2\right)V \propto \rho = 0$, so with the scalar potential V = 0 $\rho(\mathbf{r}, t) = 0$

(b) (7) Determine
$$\mathbf{E}(\mathbf{r}, \mathbf{t})$$
 and $\mathbf{B}(\mathbf{r}, \mathbf{t})$ in \mathcal{S} . $\mathbf{E} = -\frac{\partial \mathbf{A}}{\partial t} = 0$, $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A}$,
 $B_x = A_0 \frac{\partial}{\partial y} e^{-r^2/R^2} = -2A_0 \frac{y}{R^2} e^{-r^2/R^2}$, $B_y = -A_0 \frac{\partial}{\partial x} e^{-r^2/R^2} = -2A_0 \frac{x}{R^2} e^{-r^2/R^2}$,

(c) (6) The frame \overline{S} moves relative to S at a velocity $\mathbf{v} = v\hat{x}$, and its origin overlaps that of S at t = 0. Determine the four-vector potential in the frame \overline{S} : $\overline{A}^{\mu}(\mathbf{\bar{r}}, \overline{t})$. $x = \gamma(\overline{x} + v\overline{t}), \ y = \overline{y}, \ z = \overline{z}, \ t = \gamma(\overline{t} + v/c^2\overline{x}), \ \overline{r}^2 = \gamma^2(\overline{x} + v\overline{t})^2 + \overline{y}^2 + \overline{z}^2, \ \gamma = 1/\sqrt{1 - v^2/c^2}$ $\overline{A}^0(\mathbf{\bar{r}}, \overline{t}) = \gamma(A^0 + v/cA^1) = 0, \ \overline{A}^1(\mathbf{\bar{r}}, \overline{t}) = \gamma(A^1 + vA^0) = 0, \ \overline{A}^3(\mathbf{\bar{r}}, t) = A^3 = A_0 e^{-\overline{r}^2/R^2}$

(d)(5) Determine the electric field $\overline{\mathbf{E}}(\overline{\mathbf{r}}, \overline{t})$, in the frame $\overline{\mathcal{S}}$. $\overline{E} = -\frac{\partial \overline{A}}{\partial \overline{t}} = \gamma v \frac{2A_0}{R^2} (\overline{x} + v\overline{t}) e^{-\overline{r}^2/R^2}$ Can also use field transformations of Chap 12 Name: _

Score _

./20

4. Circular antenna

An antenna consists of a circular loop of wire of radius R located in the x - y plane with its center at the origin. The current in the wire is $I = I_0 \cos \omega t$. Consider positions in the radiation zone.

(a) (5) Show that (using complex notation) $\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \frac{I_0}{r} \mathbf{K}(k,\theta) e^{-i\omega(t-r/c)}$, define the quantity k and obtain an expression for $\mathbf{K}(k,\theta)$ as a well-defined one-dimensional integral. Hint: you may take the vector \mathbf{r} to lie in the xz plane (with y = 0).

 $\mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi} \oint d\mathbf{l}' I(\mathbf{r}',t-|\mathbf{r}-\mathbf{r}'|/c)$ In the radiation zone $|\mathbf{r}-\mathbf{r}'| = r - \hat{\mathbf{r}} \cdot \mathbf{r}'$ so then with complex notaton

$$\begin{aligned} \mathbf{A}(\mathbf{r},t) &= \frac{\mu_0}{4\pi r} I_0 \oint d\mathbf{l}' e^{-i\omega(t-r/c+\hat{\mathbf{r}}\cdot\mathbf{r}')} = \frac{\mu_0}{4\pi r} I_0 e^{-i\omega(t-r/c)} \oint d\mathbf{l}' e^{-i\mathbf{k}\cdot\mathbf{r}'}, \text{ where } \mathbf{k} = k\hat{\mathbf{r}}, \text{ with } \mathbf{k} = \omega/c. \end{aligned}$$
Put the $x-$ axis under \mathbf{r} so that $\mathbf{r} = \sin\theta\hat{\mathbf{i}} + \cos\theta\hat{\mathbf{z}}$. Then
$$d\mathbf{l}' = Rd\phi'\hat{\phi}' = Rd\phi'(-\sin\phi'\hat{\mathbf{x}} + \cos\phi'\hat{\mathbf{y}}, \ \mathbf{k}\cdot\mathbf{r}' = \omega/cR\sin\theta\cos\phi'). \text{ Thus } \mathbf{A}(\mathbf{r},t) = \frac{\mu_0}{4\pi}RI_0e^{-i(\omega t-r/c)}\int_0^{2\pi}d\phi'(-\sin\phi'\hat{\mathbf{x}} + \cos\phi'\hat{\mathbf{y}})e^{-i\omega R/c\sin\theta\cos\phi'} \end{aligned}$$
Then
$$\mathbf{K} = R\int_0^{2\pi}d\phi'(-\sin\phi'\hat{\mathbf{x}} + \cos\phi'\hat{\mathbf{y}})e^{-ikR\sin\theta\cos\phi'}$$

(b) (10) Express **E**, **B** and
$$\frac{dP}{d\Omega}$$
 in terms of $\mathbf{K}(k, \theta)$.
 $\mathbf{B} = \mathbf{\nabla} \times \mathbf{A} = ik\hat{\mathbf{r}} \times \mathbf{A} = \frac{ik\mu_0}{4\pi r} I_0 e^{-i(\omega t - r/c)} \hat{\mathbf{r}} \times \mathbf{K}$
 $\mathbf{E} = c\mathbf{B} \times \hat{\mathbf{r}} = \frac{ik\mu_0}{4\pi r} I_0 e^{-i(\omega t - r/c)} (\mathbf{I} - \hat{\mathbf{r}} \, \hat{\mathbf{r}} \cdot \mathbf{K})$
 $\frac{dP}{d\Omega} = \frac{1}{2} Re(\mathbf{E} \times \mathbf{B}^* \mu_0) \cdot \hat{\mathbf{r}} r^2 = \boxed{\frac{ck^2}{2\mu_0} (\frac{\mu_0 I_0}{4\pi})^2 (|\mathbf{K}|^2 - (\hat{\mathbf{r}} \cdot \mathbf{K})^2)}$

(c) (5) In general kR can take on any value, so it is necessary to evaluate $\mathbf{K}(k,\theta)$ without

approximation. This can be done using the relation: $e^{iks\cos\phi} = J_0(ks) + 2\sum_{m=1}^{m=\infty} i^m e^{im\phi} J_m(ks)$, where $J_m(x)$ is a cylindrical Bessel function. Obtain $\mathbf{K}(k,\theta)$ without approximation in terms of a J_m , specifying the argument. There are two angular integrals in the expression for I. The $\hat{\mathbf{x}}$ component vanishes because of cancellation. The integral from 0 to π is cancelled by the one from π to 2π . The remaining integral is $\mathbf{K} = \hat{\mathbf{y}}R \int_0^{2\pi} d\phi' \cos \phi' (J_0(kR) + 2\sum_{m=1}^{m=\infty} i^m e^{im\phi'} J_m(kR))$. The term with m = 1 is the only one that is non-zero. $\int_0^{2\pi} d\phi' \cos \phi' i^m e^{im\phi'} = i2\pi 1/2$ so $\mathbf{K} = \hat{\mathbf{y}} Ri\pi J_1(kR)$