
PHYSICS 322:

ELECTROMAGNETISM

12 June, 2019 Final Exam Solution

Name: Score /20

1. Waves moving through a system with free electrons

Consider an electromagnetic wave of angular frequency ω moving through a medium that

contains free electrons of charge q with a constant density, ne, (number of electrons per unit
volume) that is constant in space and time.

(a) (6) An electric field E = E0(r)e−iωt of very long wavelength, λ � 1/n
1/3
e , moves through

the medium. Use Newton’s equation to determine the current density induced by E.

Use F = mdv
dt

= qE to get dv
dt

= q/mE0e
−iωt. E0(r) can be considered to be a constant because

of the long wavelength approximation. Then integrate over t to get v(t) = iqE
mω
e−iωt.

Then j = qnev = i
ne q

2E0

mω
e−iωt .

(b) (6) Write Maxwell’s equations for the electromagnetic wave that moves through the
medium.

∇ · E = ρ
ε0
, ∇ ·B = 0, ∇× E = −∂B

∂t
,∇×B = µ0j + 1

c2
∂E
∂t
.

(c) (4) Use the equations of part (b) to derive a wave equation for E. take ∇× acting on
Faraday’s law so ∇× (∇× E) = ∇(∇ · E)−∇2E = −∇2E. The last step is obtained from
the constant nature of ρ here. The other side of the equation is ∂

∂t
∇×B = − ∂

∂t
µ0j− 1

c2
∂2E
∂t2

.

Also − ∂
∂t
µ0j = iωj = −µ0neq2

m
E. Then −∇2E + 1

c2
∂2E
∂t2

+ neµ0
m
q2E = 0

(d) (4) Find a condition on the value of ω such that the electromagnetic wave can propagate
in this medium indefinitely. Use E0(r) = eikz in the equation of the previous problem. Then

get k2 − ω2/c2 + q2neµ0
m

= 0. For propagation k must take on only real values, so k2 > 0. Thus

the condition on ω is that ω2 > c2neµ0
m

q2.
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2. Relativistic kinematics

The threshold kinetic energy Tth in the laboratory (target particle at rest) for a given reaction
is the minimum kinetic energy of the incident particle on a stationary target needed to make
the reaction occur.

(a) (6) Calculate the threshold kinetic energy for the process of neutral pion production in a
collision between a proton beam and a target proton (which is at rest) so the reaction is:
p+ p→ p+ p+ π0. Take the proton mass to be M and the pion mass to be mπ.

Four-momentum conservation says −c2P 2
i = −c2P 2

f with P µ
i,f representing the

four-momentum and i(f) representing the initial (final) state. −c2P 2
i = (EL +Mc2)− P 2

Lc
2

with EL the total Lab energy of the beam EL = TL +Mc2 and PL its momentum and TL as
kinetic energy. −c2P 2

i = 4Mc2 + 2TLMc2 = −c2P 2
f = (2M +mπ)2. The threshold energy is

achieved when all particles in the final state are at rest. Solving the previous equation gives

TL = mπc
2 +

m2
π

2M
c2

(b) (7) An unknown particle of mass M is found to decay into two particles of given mass and

momentum m1,p1 and m2,p2. The magnitude of the momenta of the two final particles and
the angle θ between the two particles are measured. Determine the mass M in terms of the
given quantities. Four-momentum conservation says −c2P 2

i = −c2P 2
f . The unknown particle

always has −c2P 2
i = M2c4 which is equal to −c2P 2

f = −c2(p1 + p2)2 where p1,2 are four-vectors.
−c2(p1 + p2)2 = (E1 +E2)2− c2(p1 +p2)2 = E2

1 − c2p2
1 +E2

2 − c2p2
2 + 2E1E2− 2c2|p1| |p2| cos θ

so M2 = M2
1 +M2

2 + 2E1E2/c
4 − 2|p1| |p2| cos θ/c2 , where E1,2 =

√
M2

1,2c
4 + p2

1,2c
2

(c) (7) For the situation of (b) the particle of mass M is created in a lab with a kinetic energy

of Mc2. Suppose it has a known lifetime of τ (in its rest frame). How far on average will it
travel in the lab before decaying?

The travel time in the lab is D = vγ(v)τ .The total energy is 2Mc2 = Mc2γ(v), so γ = 2. The
speed of the particle is given by γ = 1/

√
1− v2/c2, so v/c =

√
3/2. The distance travelled is

=
√

3/2c ∗ 2 ∗ τ =
√

3cτ

2



Name: Score /25
3. Four-Vector Potential

In a frame S, the vector potential A is given by A = A0ẑ exp(−r2/R2), where R is a given
length and A0 is a given potential strength, a constant with dimensions of Tm. The electric
potential V (~r, t) = 0 in that frame.

(a) (7) Determine the charge density ρ in the frame S.

( 1
c2

∂2

∂t2
−∇2)V ∝ ρ = 0, so with the scalar potential V = 0 ρ(r, t) = 0

(b) (7) Determine E(r, t) and B(r, t) in S. E = −∂A
∂t

= 0 , B = ∇×A,

Bx = A0
∂
∂y
e−r

2/R2
= −2A0

y
R2 e

−r2/R2
, By = −A0

∂
∂x
e−r

2/R2
= −2A0

x
R2 e

−r2/R2
,

(c) (6) The frame S moves relative to S at a velocity v = vx̂, and its origin overlaps that of S
at t = 0. Determine the four-vector potential in the frame S̄: Āµ(r̄, t̄).

x = γ(x̄+ vt̄), y = ȳ, z = z̄, t = γ(t̄+ v/c2x̄), r̄2 = γ2(x̄+ vt̄)2 + ȳ2 + z̄2, γ = 1/
√

1− v2/c2

Ā0(r̄, t̄) = γ(A0 + v/cA1) = 0, Ā1(r̄, t̄) = γ(A1 + vA0) = 0, Ā3(r̄, t) = A3 = A0e
−r̄2/R2

(d)(5) Determine the electric field E(r, t̄), in the frame S.

Ē = −∂Ā
∂t̄

= γv 2A0

R2 (x̄+ vt̄)e−r̄
2/R2

Can also use field transformations of Chap 12
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4. Circular antenna

An antenna consists of a circular loop of wire of radius R located in the x− y plane with its
center at the origin. The current in the wire is I = I0 cosωt. Consider positions in the
radiation zone.

(a) (5) Show that (using complex notation) A(r, t) = µ0
4π

I0
r
K(k, θ)e−iω(t−r/c), define the

quantity k and obtain an expression for K(k, θ) as a well-defined one-dimensional integral.
Hint: you may take the vector r to lie in the xz plane (with y = 0).
A(r, t) = µ0

4π

∮
dl′I(r′, t− |r− r′|/c) In the radiation zone |r− r′| = r − r̂ · r′ so then with

complex notaton

A(r, t) = µ0
4πr
I0

∮
dl′e−iω(t−r/c+r̂·r′ = µ0

4πr
I0e
−iω(t−r/c) ∮ dl′e−ik·r′ , where k = kr̂, with k = ω/c .

Put the x− axis under r so that r = sin θ̂i + cos θẑ. Then
dl′ = Rdφ′φ̂′ = Rdφ′(− sinφ′x̂ + cosφ′ŷ, k · r′ = ω/cR sin θ cosφ′). Thus

A(r, t) = µ0
4π
RI0e

−i(ωt−r/c) ∫ 2π

0
dφ′(− sinφ′x̂ + cosφ′ŷ)e−iωR/c sin θ cosφ′

Then K = R

∫ 2π

0

dφ′(− sinφ′x̂ + cosφ′ŷ)e−ikR sin θ cosφ′

(b) (10) Express E, B and dP
dΩ

in terms of K(k, θ).

B = ∇×A = ikr̂×A = ikµ0
4πr

I0e
−i(ωt−r/c)r̂×K

E = cB× r̂ = ikµ0
4πr

I0e
−i(ωt−r/c)(I− r̂ r̂ ·K)

dP
dΩ

= 1
2
Re(E×B∗µ0) · r̂r2 =

ck2

2µ0

(
µ0I0

4π
)2(|K|2 − (r̂ ·K)2)

(c) (5) In general kR can take on any value, so it is necessary to evaluate K(k, θ) without
approximation. This can be done using the relation:
eiks cosφ = J0(ks) + 2

∑m=∞
m=1 imeimφJm(ks), where Jm(x) is a cylindrical Bessel function.

Obtain K(k, θ) without approximation in terms of a Jm, specifying the argument. There are
two angular integrals in the expression for I. The x̂ component vanishes because of
cancellation. The integral from 0 to π is cancelled by the one from π to 2π.The remaining
integral is K = ŷR

∫ 2π

0
dφ′ cosφ′ (J0(kR) + 2

∑m=∞
m=1 imeimφ

′
Jm(kR)). The term with m = 1 is

the only one that is non-zero.
∫ 2π

0
dφ′ cosφ′ imeimφ

′
= i2π1/2 so K = ŷRiπJ1(kR)
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