Follows from continuity of tangential components of \mathbf{E} across boundary

$V_1 \sin \theta_2 \leq V_2 \leq V_1$ (Snell's Law)

Now apply boundary conditions. Continuity of

Subscripts 1, 2 refer to media

Normal D $\mathbf{E}_1 \cdot \mathbf{n}_1 = \mathbf{E}_2 \cdot \mathbf{n}_2 \rightarrow 0 = 0 \checkmark$

Normal B $\mathbf{B}_1 = \mathbf{B}_2 \quad \mathbf{B} \perp \mathbf{E}$

Sample incident +reflected

$E_0^I + E_0^R = \frac{V_1}{V_1} \sin \theta_2 \cdot E_0^I = \frac{1}{V_2} \sin \theta_2 \cdot E_0^R$ \(\square \)

Tangential \mathbf{E} gives same eqn.

This gives

$\mu_1 \left[\frac{1}{V_1} E_0^I (-\cos \theta_1) + \frac{1}{V_2} E_0^R \cos \theta_2 \right] ^T = \frac{1}{\mu_2} \frac{1}{V_2} \left(E_0^I (-\cos \theta_2) \right)$

$\Rightarrow \frac{E_0^I - E_0^R = \mu_1 V_1 \cos \theta_2 \cdot E_0^I}{\mu_2 V_2 \cos \theta_2}$

Two boxed equations are two eqns to two unknowns E_0^I, E_0^R in terms of E_0^I

$\cot \beta = \frac{\cos \theta_2}{\cos \theta_1} \quad \beta = \frac{\mu_1 V_1}{\mu_2 V_2}$

Adding the 2 boxed equations gives

$E_0^R = \frac{2}{1 + \mu_1} E_0^I$
Given E_{0r} use (1) to get E_{0r}

$$E_{0r} = \frac{1 - \alpha \beta}{1 + \alpha \beta} E_{0i}$$

α, β both positive

The two boxed equations are the Fresnel eq

Note E_{0i}, E_{0r}, E_{t} are all complex numbers

since $\alpha \beta > 0$ E_{0r} has the same phase as E_{0i}

$\alpha \beta \leq 1$ E_{0r} has the same phase as E_{0i}

$\alpha \beta > 1$ E_{0r} opposite phase

$$|E_{0r}| = \left| \frac{1 - \alpha \beta}{1 + \alpha \beta} \right| E_{0i}$$

(b) The Reflected intensity $= \frac{1}{2} I_{0r} |E_{0r}|^2$

Incident intensity $= \frac{1}{2} I_{0i} |E_{0i}|^2$

$$R = \frac{I_{0r}}{I_{0i}} = \left(\frac{1 - \alpha \beta}{1 + \alpha \beta} \right)^2 = R$$
(c) now \(d = \frac{\cos \theta_2}{\cos \theta_1} \) \(\beta = \frac{c}{v_2} = \frac{n - 1}{n + 1} \) where \(\varepsilon \) is small

\[\theta_1 = \frac{\pi}{2} - \delta \]
\[\delta < 1 \]

\[n_1 \sin \theta_1 = n_2 \sin \theta_2 \]

Snell's Law

\[\sin \theta_1 = (1 + \varepsilon) \sin \theta_2 \]
\[\sin \left(\frac{\pi}{2} - \delta \right) = (1 + \varepsilon) \sin \theta_2 \]

\[\cos \delta = (1 + \varepsilon) \sin \theta_2 \]
\[1 - \frac{\delta^2}{\varepsilon^2} = (1 + \varepsilon) \left[\cos \delta \right] = (1 + \varepsilon) \left(1 - \frac{\delta^2}{\varepsilon^2} \right) \]

This justifies \(\delta < 1 \)

\[\lambda = \frac{\cos \left(\frac{\pi}{2} - \theta_1 \right)}{\cos \left(\frac{\pi}{2} - \delta \right)} = \frac{\sin \lambda}{\delta} \approx \frac{\lambda}{\delta} \]

\[\beta = 1 + \varepsilon \]

From 9.111\[R_{11} = \left(\frac{d - \beta}{d + \beta} \right)^2 \]

\[\left(\frac{X - \beta}{dX + \beta} \right)^2 = \left(\frac{Y - \beta}{dY + \beta} \right)^2 \]

From previous page \[R_{11} = \left(\frac{1 - d \beta}{1 + d \beta} \right)^2 = \left(\frac{1 - \frac{\pi}{2} \beta}{1 + \frac{\pi}{2} \beta} \right)^2 \]
Multiply previous R_1 by δ / β.

$$R_1 = \left(\frac{\delta / r - \beta}{\delta / \beta + \beta} \right)^2$$

$R_{11} \propto R_1$

These are the same if

$$\delta \gg \lambda$$

This is true if ϵ is small enough because from previous page

$$\gamma^2 = \delta^2 + 2 \epsilon$$

ϵ must be of order δ^3 or higher power.