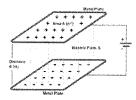

$\begin{array}{c} {\rm PHYSICS~321} \\ {\rm CLASSICAL~ELECTRODYNAMICS} \end{array}$


8 Oct. 2019 Problem Set 3 These problems are due on Thursday, Oct 17

1. Electric Field of an Atomic Nucleus The radial dependence of the electric charge density inside a certain atomic nucleus of radius a is roughly described by the piecewise function: $\rho(r) = \rho_0(1 - r^2/a^2)$ if $r \le a$, and $\rho = 0$ if r > a. You are given that a = 3.4 femtometers = 3.4 fm.

- (a) The nucleus contains 21 protons, Determine the value of r_0 .
- (b) Find \mathbf{E} and V for positions outside the nucleus. What are their values at the surface?
- (c) Find \mathbf{E} and V for positions inside the nucleus. Determine their values at the center.
- (d) In units of a, what is the radial location of the maximum magnitude of the electric field
- (e) Plot E and V as functions of r/a for values of r/a between 0 and 5.
- 2. A thin rod of length L has its left end at x = -L/2 and its right end at x = L/2. The rod carries a line charge density given by $\lambda = \lambda_0 \frac{x^2}{L^2}$.
- (a) Determine the electric field at the origin.
- (b) Determine the electric potential V at all points in space. You can express your answer in terms of a well-defined one-dimensional integral.
- 3. Consider an infinitely long cylinder of radius a, with a uniform (constant) charge density, ρ . Determine the electric field (per unit length) for positions inside and outside the cylinder.
- 4 . The potential energy of a sphere of charge
- (a) Calculate the electric potential energy of a sphere of radius R carrying a total charge Q uniformly distributed throughout its volume.
- (b) Calculate the gravitational potential energy of a sphere of uniform density with radius R' and total mass M.
- (c) Calculate the gravitational potential energy of the moon.
- (d) Imagine that you can assemble a sphere of protons with a density equal to that of water. What would be the radius of this sphere if its electric potential energy were sufficient to blow up the moon?
- (e) Determine the voltage at the surface of the sphere of protons?

5.

Two metal plates having and area A and separation d form a parallel plate capacitor. Take the area to be a square of length $L = \sqrt{A}$ with $L \gg d$. Let the vertical direction be the z axis and the horizontal direction the x axis. The potential at the top z = d is held at a potential V_0 , and that at the bottom is grounded (its potential is 0.

- (a) Use Laplace's equation to determine the potential in the region between the plates.
- (b) Determine E.
- (c) Determine the charge distribution on each plate.
- (d) Determine the capacitance of the parallel-plate capacitor.

Mun 321

Solupho my 2

Adumn 2016

P. J. = Qence Eo omstree

E(r) 4Tir2 = i stantin relat p=0 ade for outside

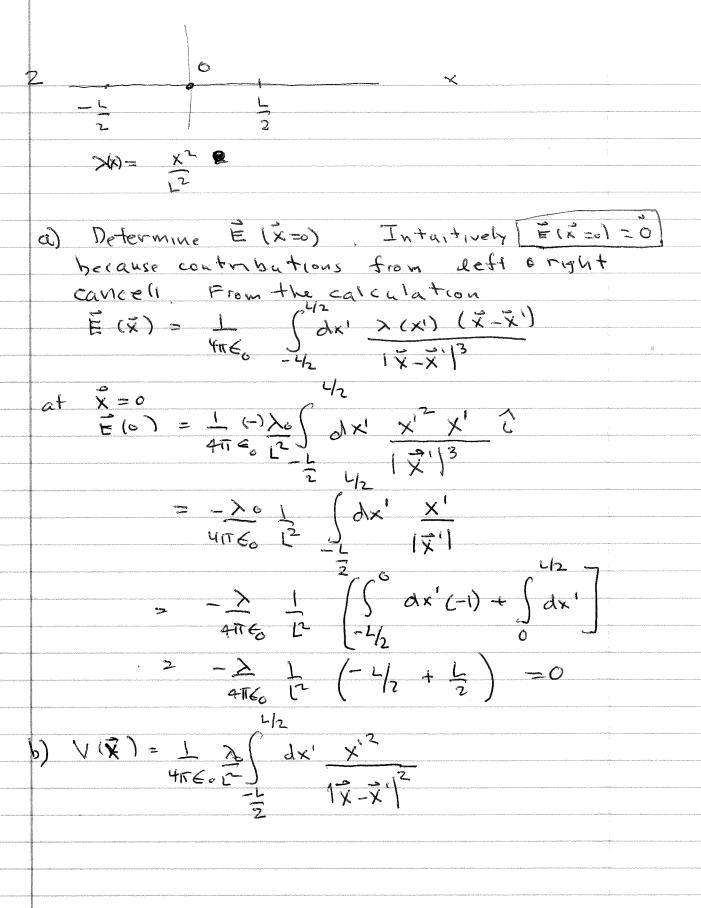
 $(B_n \text{ symmetry} : \vec{E}(\vec{r}) = E(r)^{\delta}.$

) Gauss' Law 7 Thegral Form.

2) [E(F) = I(F) x,

V(x) = - \(\telta(6') \d' = - \frac{1}{476} \delta(6') \frac{21e}{872} = - \frac{21e}{4776} \left(\frac{1}{8'} \right) \)

At surface r=a, $\vec{E}(a) = \frac{1}{4\pi \epsilon_0}$, $\frac{21e}{a^2}$


use same approach as in (b)

(c) Inside nucleus E(r) 417 r =

radius rea

My 321 Dolum to that? At 2016 a (c) cut'd. $t(r) = \frac{1}{5} \cdot f_0 + \frac{\pi}{3} \cdot \frac{\pi}{5} = \frac{1}{5} \cdot \frac{\pi}{3}$ = 641 rolis stans $\Rightarrow [E(r)] = [or [3] = f(x)]$ $\in [3] = f(x)$ $\in [3] = f(x)$ and $V(r) = -\int_{-\infty}^{\infty} E(r') dr!$ $=-\int_{0}^{\infty}E(r')dr'-\int_{0}^{\infty}E(r')dr'$ $= \frac{21e}{4\pi\epsilon_0 a} - \frac{1}{\epsilon_0} \left[\frac{1}{3} \right] r' dr' - \frac{1}{5a^2} \left[r'^3 dr' \right]$ $V(r) = \frac{2le}{4\pi\epsilon_{0}a} - \frac{1}{\epsilon_{0}} \left[\frac{1}{\epsilon_{0}} \left(r^{2} - a^{3} \right) - \frac{1}{20a^{2}} \left(r^{4} - a^{4} \right) \right]$ Theo [E(D) = 0] rudens, (=0) $V(0) = \frac{21e}{4\pi\epsilon_{A}} - \frac{1}{16} \left[-\frac{\alpha^{2}}{6} + \frac{\alpha^{4}}{20\alpha^{2}} \right]$ from (a); 21e=41/0=13 三篇章十层第一点) VO= PO 2-1

Adm to Hwf? Page 324 Aut Roll (frent Elt)=E(r) (r)). a) (d) paximum of E(r) where $E(r) = \begin{cases} \frac{1}{4\pi 6}, & \frac{21e^{-\frac{3}{2}}e^{\frac{2}{3}}e^{\frac{3}{2}}}{r^{2}}e^{\frac{3}{3}}e^{\frac{3}{3}} \end{cases}$ 超過一般到 (02129) trelles drops as to for cetta, so way. unset be in the region of rea-Take usual approach to de = 0 to get ! [3-12] + r[-2r] = 0 $\frac{3}{5}(\frac{c}{a})^2 = \frac{1}{3} \Rightarrow |\frac{c}{a}| = |\frac{5}{9}| = |\frac{5}{3}| \approx 0.75$ By impection, 2 E/O, therefore == 15 is the radial electric fell magnitude see expression in 4(d) 8 earlies. drops as /+2 1/0

Infinitely long crlinder. We have Cylindrical symmetry E points in the radial direction Use Gauss Law with cylindrical symmetry take a cylinder of Length L radius & G = G (enclosed) E = E(P) f where f pant outward*

In side front cover cyl. coordinates use S (not V) S = E(S) = E(S) S, dQ = dQ S& E.da = ? Els constanton sur face et a plinder Thu GE da: E(s) [da = E(s) Lars $G(en closed) = (\rho c^{2})d^{3}r^{1}$ 4 S < a , Glenc)= [p(r) d3r' = p [27 5 d5 L Q(nc) = = PRILS2 > PILS2 so sca E(s) 27 LS = PT LS2 E(S) = PS Sea Inside 260 Inside Sia Outside Genc = pLS airsids' = pira L $|E(s) = \frac{p \pi a^2}{2 \cdot s \cdot s}| \text{ outside}$

3 a) This is a idemensional (2) problem

$$V(x, y, z) = V(z)$$

$$Sol'ns of Laplace equ V(z) = A + B z$$

$$V(z=0) = 0 = A$$

$$V(z=d) = Bd = Vo$$

$$B = Vold \leq 0$$

$$V(z) = Voz/d$$

$$V(z) = V(z)$$

$$V(z) = V$$

Phy 321

Asukas lo Huti3

1). The potential energy of a sphere of charge

Charge density
$$\rho = \frac{4}{3}\pi R^3$$

(B) using symmetry & Granes Law;

 $E(8) = E(3) R$ and

 $E(6) = E(3) R$ and

 $E(7) = \frac{2}{4\pi E_0}$

 $V(\tau) = -(\mathbf{\hat{T}}), d\mathcal{L}$ électric personal

$$= -\int_{\mathbb{R}} f(r) dr = \begin{cases} 0 & \text{for } r > R, \\ 0 & \text{for } r < R \end{cases}$$

Electrical potential energy of charged sphere:

1) (b) Gravitakanal le can be calculated in analogy to electric PE. Since the grav. Airce the grav. Receive is attractive, tign is negative & paparkondity Constant: I -> G; 9,1992-> M, M2.

thus, Pegra = 3M² × 41160 × G 201160 R & G

(e) Noon man & 7×10²²/29 3, Noon Radium & 1700 km

 $PE_{grav} = -\frac{3\times6.7\times10^{11}\times4\times10^{12}}{5\times1.7\times10^6}$ 5 oular $\approx -1.2\times10^{14}$ doular.

(d). Need [PEelec] > [PEgran] or PEelec + Pegran 70.

Then 30 + - 36M > 0.

20TTER 5R 5R = 0 Russon

Minimum radius needed = 4TEG GMinon.

Water density = 1000 kg/m³ = 7 take to be proton density

O) dronge density $P = \frac{10000 \text{ kg/m}^3}{\text{mp}} \times e \approx 9.6 \times 10^{10} \text{ c}$ Perfect = $\frac{30^2}{201160} = \frac{30^2}{201160} \left(\frac{311}{311}R^3\right)^2 + \frac{1}{3} \cdot \frac{4}{5} \cdot \frac{1}{5} \cdot \frac{7}{51} \cdot R^5 = 1.2 \times 10^{29} \text{ c}$ Advertor for minimum radius = $\frac{1700}{100}$

Phys 321 John to Hook 3 Ant 16 i) (e) Nottoge at surface of there (see (a)): V(R) = Q P 3 TR 2 P 3 F R 2 P 3 F R 2 P R 3 F R 2 P R 3 F R 2 P R 3 F R 2 P R 3 F R 2 P R 3 F R 2 P R 3 F R 2 P R 3 F R 2 P R 2 P R 3 F R = 9.6×10 × (0.17) 2 Volts
3×8.85×10 V(B) = 1020 Volta. a) Fenciaphenical Bowl Zas Voltage at any point along the vertical z - axis can be obtained by running up the artistations for right of change located at azinuthal "condinate" & (dehet line). Right D has Potaulial at worth pole (NP) &

VNP = HTEO J RETERMO) RdO

JRETER AREASE TLDWG=REINB Distance trous NP= 182+82-282 and from = OR L OTHE AND LA enter = R. can integrate by charging variable, to x = cont. = OR ONE - OR - VNP.