Last time - energy of electric field and then properties of conductor.

Today we'll start by combining the two ideas: conductors used in energy storage and also in circuits. Under a capacitor is a terminal electrical component that stores energy in E-field.

Any two conductors separated by an insulator (or vacuum) form a capacitor:

\[\begin{array}{cc}
\text{O} & \text{O} \\
Q & -Q
\end{array} \]

In practical applications, each conductor initially has 0 charge and electrons transform from one to the other.

Then two conductors have equal and opposite charge and total charge on the entire system remains 0.
Cap. with charge \(Q \) means one has to charge \(-Q\).

Cap. is used as components of electric circuits to block DC but allow AC.

Capacitors are used in resonant circuits to stabilize power flow. In circuits they are written as \(\frac{Q}{V} \) or \(\frac{\text{C}}{V} \) for conductors.

One way to charge a capacitor is to connect two wires to opposite terminals of a battery. Once a steady equilibrium is established, the battery is disconnected, this gives the potential difference between conductors:

\[
V_+ - V_- = - \int \frac{dQ}{e^2} = V
\]

\(V \) is proportional to \(Q \), more charge means more potential drop.

\[
C = \frac{Q}{V} = \frac{\text{Coulomb}}{\text{Volt}} = \text{Farad}
\]

Units [C] = \(\frac{\text{Coulomb}}{\text{Volt}} = \text{Farad} \)

\(\mu F = 10^{-6} F \)

\(PF = 10^{-12} F \)
The C is a geom quantity
determined by sites shape, separation
of conductors
Worthwhlle to do example
Two concentric spherical metal
shells radii a, b

\[\text{what is } C \]

Step 1 - what is E

Gauss Law, Gaussian surface
Spherical symmetry
\[\Phi \cdot a^2 r < b \]

\[E = \frac{Q}{4\pi \varepsilon_0 \ r^2} \]

\[V = - \int_a^b E \cdot dl = + \int_b^a E \cdot dl \text{ path independent} \]

Take straight line, $dl = dr \ r$

\[V = + \frac{Q}{4\pi \varepsilon_0} \int_a^b \frac{dr}{r^2} = - \frac{Q}{4\pi \varepsilon_0} \left[\frac{1}{r} \right]_a^b \]

\[= \frac{Q}{4\pi \varepsilon_0} \left(\frac{1}{b} - \frac{1}{a} \right) = \frac{Q}{4\pi \varepsilon_0} \left(\frac{b-a}{ab} \right) \]
\[C = \frac{Q}{V} = \frac{4\pi \varepsilon_0 ab}{b-a} \]

How much energy is stored in a capacitor? To charge up a capacitor, remove electrons from one side and move them to the other. Do this means you fight against \(E \) which pulls electron back:

\[q \]

How much work to get to final charge \(q \)? Suppose at intermediate stage, charge on positive plate is \(q \), \(V = q/C \)

The work to transport next piece of charge \(\Delta q \), is \(V \Delta q \)

\[dW = \frac{q}{C} dq \]

\[W = \frac{1}{2} \frac{q^2}{C} = \frac{1}{2} CV^2 \]
Next topic. Compute potentials

Two basic equations:

Poisson's: \(\nabla^2 V = -\frac{\rho}{\varepsilon} \)

If \(\rho = 0 \): Laplace \(\nabla^2 V = 0 \) (Harmonic function)

\(\nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} - \frac{\partial^2}{\partial z^2} \)

\(\nabla^2 \) = Laplacian

Now Laplace equation has one very easy solution - \(V = 0 \)

How can \(V \neq 0 \) when \(\nabla^2 V = 0 \)

\(\rho \neq 0 \) over here

Laplace equation in gravitation

Imagism, heat conduction, even quantum mechanics.

A version that's similar with similar solution techniques is

Helmholtz equation: \((\nabla^2 + k^2) V = 0 \)
We'll follow & discuss solutions of L. eq in 1, 2, 3 dimensions.

1. Dimension - Physics independent of 2 dimensions - example very two large conductors.

\[\nabla^2 V = 0 \Rightarrow \frac{d^2 V}{dx^2} = 0 \]

\[V = ax + b \]

2nd order diff eq. 2 constants needed to specify potential.

Physics is nd - at \(x = 2 \text{ m} \), \(V(x) = 5 \text{ V} \)

\[x = 4 \text{ m} \quad V(x) = 9 \text{ V} \]

What is \(a, b \)

\[V(4) - V(2) = a(4 - 2) = 2a \text{ V} \]

\[a = 2 \text{ V/m} \]

\[V(2m) = 5 \text{ V} = \frac{2V(2) + b}{m} \]

\[b = 1 \text{ V} \]
2 apparent features of 1D in case are general

1) \[V(x) \text{ is average of } V(x+c) \theta V(x-c) \]
 \[V(x) = \frac{1}{2} (V(x+c) + V(x-c)) \]
 \[= \frac{1}{2} [a(x+c) + b + a(x-c) + b] \rightarrow 0 \]
 \[= \frac{1}{2} (2ax + 2b) = ax + b \]

2) Solution of Laplace eq has no local max or min. Max or min at endpoint
 \[\text{Local max or min looks like } L \lor U \]
 \[\text{These are not solutions} \]
 \[\text{Solution look like } L \]

More generally reasoning if \(V(x) \) were at a max it would be higher than at \(x \pm c \) and could not be the average
Two dimensions

\[\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} = 0 \]

This is a PDE.

\(
\text{infinitely many solutions:} \\
V = (mx + b)(ny + c) \\
or \quad e^{-xy} \sin x \\
\quad e^{-px} \sin by
\)

Can't be discussed in a simple form as in the 1 dim case

Same two properties true

\[V(\mathbf{x}, \mathbf{y}) = \frac{1}{2\pi R} \int \limits_{\text{circle}} V \, d\mathbf{a} \]

\[V \text{ is an average over circle} \]

This is an average over a circle
Example suppose

\[V = (m x - 6)(m y + b) \]

\[x = R \cos \phi \]
\[y = R \sin \phi \]

Call point in question the origin

\[\int_0^{2\pi} \int_0^{2\pi} r^2 R d\phi \left(m R \cos \phi + b \right) \left(m R \sin \phi + b \right) \]

\[= \frac{1}{R} \int_0^{2\pi} d\phi \ a b = ab = V(0,0) \]

This average suggests a method for computer simulation solutions of Laplace's equation.

Start with \(V \) on boundary, guess \(V \) for grid of interior points first.

Pass \(V \) to each point by averaging of its neighbors, 12 nd passes repeats.

Method of relaxation is name
Again V has no local max or min. If it did V could not be the average of nearby points.

2 Dimensions

\[\frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = 0 \]

Example \(V = (mx + c)(ny + e)z(1 - ez) \)

\[\sin \alpha \sin \beta \ e^{\pm \sqrt{a^2 + b^2} z} \]

Again the property that \(V \) is average of nearby point holds.