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Energy of a distribution of charge

W=k§qiVlr) Igi → fpdsr

W = tzfpcrsvcrdr ← per) , Vcrs are evaluated
at the same point in space

Its an interesting exercise to write W in terms
of E

.
It also gives some practice in vector

calculus .

Phi) = E. 8. Ect)

W = th Eof Vcrs @oEceDd3r
Vector calculus version of integrating by parts .

Reminder: Integration by parts in ID calculus
.

For 2

functions UK)
,
Ux)
d luv) = Vdu t Udv (product rule)

Integrate
follow) = fvdu tfudv
-
=UV

so {budv = uvlab - fabvdu .

Sometimes the rhs is easier to evaluate than
the Ihs .



One of the vector calculus versions :

Vtr) is a scalar field (number at every point F )
ECT) is a vector field ( vector at every point T)

Vtr) Ferg is a scalar times a vector

(which is just another vector) at every point F
.

So we can take a divergence and apply the
product rule as in the ID case

8. ( VET = Ex (VED t Ey (VEY) t IzlVEz)
= Ex # t VEI't Ey # + VIET + Ez¥ztVff¥

So

f. (VE) = E . V) t V8. E) ( even if we dont

use Cartesian coordinates)

Integrate over some volume

fE.lVEJdisr-fEo@v1d3rtfvC8.E)d3r

Use divergence them . to do the Ihs and reshuffle :

IVIE .E) d3r= E) odd - JE . (EV)d3r
.



Back to the physics

W=tzEofVcr(8. Ears)d3r
= §VCrTEcrJoda- - EJECT) . (Evers)d3r

The integration volume needs to enclose all of Pir) .
But if we make it bigger than part , thats fine
because p=o out there so it doesn't change our
answer . Lets take the volume to be a sphere of
radius R and take Reno . Far away ,

E - try V- tr ,
da - R
'

so the surface integral goes
i ←Boundary of as tp → 0 as Rs

.

r
' integration

in::¥÷÷÷÷÷:÷÷÷÷:*
We'd get the same answer in the end]

Next
,
we identify - EV - E so

W=¥fEcr→oETr7d3r

W=¥f⇐rH2d
This suggests the interpretation that Eozf East is the

energy per unit volume stored in the electric field .

Anything wrong?



Our equation for W in terms of E is manifestly
positive , whereas the formula in terms of p and V
could be negative (e.g .

two oppositely - charged point
charges) .

So which one is right?

Recall that the formula

W - E? giver
does not include the potential due to qi in VCE) ,
that is we sum up the potential due to all other

charges, but omit the energy of qi due to its

own potential .
As an extreme example , consider a single point charge .
Our original formula says W - O

,
since we omit

the only source of V
.

On the other hand
,
the coniferous formula gives

W= E) qscrgyfetordr-s.IE. ' I =
.

°"

W - ¥f¥¥/
-rzsino-drdodo-s.IT/Iradr--sfIe.rt/T-- no



The difference is that the discrete formula omits the
(infinite) energy required to build a point charge .

It only counts the energy required to arrange
various pre-fabricated point charges .

Moai : If setting infinity to zero bothers you,
you are not alone

. Here's a second example that
illustrates whats going on .

Take two compact , localized charge distributions

pile) and pace) so that ptr) = piers tpzcr) .
We can compute the

potentials Vier) and Vdt)

B due to each distribution
Be

individually :

Vce) - V , ther) - IIe.fm#d3rtIFeofmfIdsr
The total energy is

W = tzfpcrsvlrdr
= Ifp,Yd3r ttzfpikdrttzfpzV.drtztfpzv.dk

Now if we move p , as a whole to some other

location
,

then the first and last terms don't change .
Only the cross terms change .



So if p , and Pe are
"

small
"

and we promise not

to deform them
,
but only to translate them in space

as a whole
,

then the first and last terms

contribute a finite constant to W
. Since (outside

of general relativity) a constant added to the

energy has no effect
,

we can ignore that

bit without changing our physical predictions .

W = tzfpikdr t tzfpzvidr t const .

In the limit that the distance between p, & Pe
is much bigger than the size of pi or Pz ,
then we can make the approximation

ping,
8% -ri) , part 9,2838 - ri)

and
W = tzqiklrttzqalkr)

We carnet make the same approximation for the

constant part . But if we're not worried about the

constant , we can just ignore it, and using point
charges makes the rest of the calculation easier.



Boundaryconditionsforsolvingpoissonsequati.IO'll = - pl Eo

2nd order partial differential equation
→ need 2 boundary conditions : V

,
TV

( same story in Mechanics : F - Maddox ⇒ need No)
,
Va) )

Example : infinite plane of charge
2- ^

←
↳ Above ¢ Below
IE p - o ⇒ ON - o .

the boundary is at Z- o
.

I
.e
IE

What are the boundary conditions ?

Gauss ' law JE.de = QEII = EAT

Etz> o) - 2¥ I
,

E- lzho) = - Ee
.
I

Eat
.ve

- Etbeiow = Eo ,
E' "
above
- EYE,ow - O

L

Zf# SEE) - dei
'

= fE.DE =
- L ( Eaiioue - Efaw ) - 0

This sets the Bc for E' = - EV
.



What about V ?

V
.
- Va - fate .ae.

As a→6 Ide → o and Vo - Va → O or Vasko
V is continuous across the boundary .

These arguments apply in general , even if there
is an additional external field Eext . If we get
close enough to any surface

,
it eventually

looks like an infinite plane . If there's no surface

charge , just take 0=0
.

So
,
to summarize

¥1! jE€ in points
"

above
")

The potential and E field along the surface are

continuous
,
and there's a discontinuity in the perpendicular

or
"

normal
"

component of E which is proportional to
the surface charge .



Another note about discontinuities and infinities
.
We get

a discontinuity in Et because we have modeled the charge
distribution as infinitesimally thin : play ,⇒ - ocxipscz) .
More realistically , we could spread the charge out

over some finite thickness w

play,⇒={D ,
Izk -8

0 otherwise

E- o#÷W
Then

, using Gauss law the field is

SE.ae = 0¥
.
= EAT .EE ,# WE

1
,
otherwise

Etz = E. ×{Hw , Hawk1
,
otherwise

Et n

÷#÷. -Wf Wh

-

So if w is thin enough , it looks like Et is discontinuous
.



Moddingrealmaterialse
Limiting cases - perfect insulator and perfect conductor

.

Perfect insulator : . charges are immobile - electrons are
stuck onto atoms

Perfect conductor : o charges move freely throughout
the material - electrons are delocalized .

• Unlimited supply of charge

Today we'll discuss conductors
.

Properties of conductors :

(i) E - O inside a conductor ( for electrostatics)
→

.
Since the charge is free

¥* ¥ .gov:::D '¥
.

.

-

t

→ -

t

→ I t Gi) f- O inside a conductor

→ 8.E -Meo , E - o ⇒ p -- o .

⇐*
(iii) Any net charge lives on the surface

Ev) the conductor is an equipotential :

Va - Va = - faE.DE = 0 .



Note that this applies even if a and/or
on the surface ;b are

V) Just outside a conductor
,
E points in the

normal/ perpendicular direction ri
.

"
EE.IE?cnawrge:ew.:.*.:raw
along the surface .

Eixample : Chunk of conductor placed in an external field
.

r÷÷÷÷:
¥.Eomo: out:# i:*

.

y just outside the surface ?

→ Recall our boundary condition

→
E-
above
- Eaeiow = Eri

F-
below is inside the conductor

,
so its

' O
.

So

Eaton) = 9 ri (Different from a
sheet of charge)



Force on a charged conduct the chairs
Kattan" :#staff.to. .%
conductor. Newton's 3rd law says
there must be a reaction force
on the conductor. What is it ?

On the surface
,
Eam - Eri and Eodow - O .

You might be tempted to say the force per
unit area is

r¥=•E= Ear [not quite !]

and this is almost right . We can get the right
answer a couple of ways .

Energy : Take a small patch and push it outward
(in the ri direction) a tiny bit

.

The work done is W= - Fdl .
But we've also set the field
to Zero inside a volume Adl

.

So
- F. de = - Ade .#E) = -Ade - LET

2

FTA -_ Eeori [ correct]
Note the factor of 2

.



Forces : Alternatively , we can remember that
an infinitely - thin surface charge distribution

is an idealization If it's actually spread
over some finite thickness

,
the field isn't

discontinuous
.
It interpolates between O and I

.

surface charge
spread out over
thickness w

III.idea outside the
conductor

w E - Eri

The charge density and field are

p- E, E -- EEE) OEZEW

and so

IF = JEHpczjdz-fw.EE)IEdW
OZ r

= Ewe - tzw' k
e n

=
zeo K o


