
The Similarity Join Database Operator*
Yasin N. Silva1, Walid G. Aref 1, Mohamed H. Ali2

1Department of Computer Science, Purdue University, Indiana, USA
{ysilva,aref}@cs.purdue.edu

2Microsoft Corporation, Washington, USA
mali@microsoft.com

Abstract— Similarity joins have been studied as key operations in
multiple application domains, e.g., record linkage, data cleaning,
multimedia and video applications, and phenomena detection on
sensor networks. Multiple similarity join algorithms and
implementation techniques have been proposed. They range
from out-of-database approaches for only in-memory and
external memory data to techniques that make use of standard
database operators to answer similarity joins. Unfortunately,
there has not been much study on the role and implementation of
similarity joins as database physical operators. In this paper, we
focus on the study of similarity joins as first-class database
operators. We present the definition of several similarity join
operators and study the way they interact among themselves,
with other standard database operators, and with other
previously proposed similarity-aware operators. In particular,
we present multiple transformation rules that enable similarity
query optimization through the generation of equivalent
similarity query execution plans. We then describe an efficient
implementation of two similarity join operators, Ɛ-Join and Join-
Around, as core DBMS operators. The performance evaluation
of the implemented operators in PostgreSQL shows that they
have good execution time and scalability properties. The
execution time of Join-Around is less than 5% of the one of the
equivalent query that uses only regular operators while Ɛ-Join’s
execution time is 20 to 90% of the one of its equivalent regular
operators based query for the useful case of small Ɛ (0.01% to
10% of the domain range). We also show experimentally that the
proposed transformation rules can generate plans with execution
times that are only 10% to 70% of the ones of the initial query
plans.

I. INTRODUCTION
The shift from systems that focus on exact semantics of

data and queries to systems that focus on approximate and
imprecise semantics is recognized as one of the main current
paradigm transitions in data management systems. Different
areas have made important contributions to this paradigm shift,
among them: similarity-aware query processing in database
systems, integration of information retrieval and database
operations, and uncertain or probabilistic databases. The study
of the similarity-aware counterparts of common database
operations, i.e., selection, join, and grouping is a central goal
of the work on similarity query processing. Similarity joins
(SJ) are operations that combine two sets of data using
similarity join predicates that match tuples with similar or
approximate values. Similarity joins have been studied as key
components to solve multiple problems, e.g., record linkage,
data cleaning, phenomena detection on sensor networks,

———————————————
* This work was partially supported by NSF Grant IIS-0811954.

Implementation
complexity

Take
advantage of
DB optimizer

Composable
with other DB
operators

Supported
Join types

Similarity Join Implementation Approach
As Stored

ProceduresOutside of DBUsing Basic
SQL Operators

Integrated in
DB Engine

Queries use a
complex mix of
joins and
aggregations

Can reuse
and extend
DB operators
and structures

No

NoNo
Yes (trans. rules,
pre-aggregation,
MVs, etc.)

No directly

No
Yes (full
pipelining of
results)

AllAllAll

Certain types may
be unfeasible or
require very
complex queries

Requires
specialized
structures,
spilling
mechanisms,
etc.

Requires
specialized
structures,
mechanisms to
deal with large
data sets, etc.

Yes (resulting
queries can be
highly complex)

Fig. 1 Comparison of similarity join implementation approaches

marketing analysis, multimedia and video applications, etc.
Multiple SJ algorithms and implementation techniques have
been proposed. They range from out-of-database approaches
for only in-memory or external memory data, to techniques
that use standard database operators to answer SJs. However,
there has not been much study on the role and implementation
of similarity joins as database operators. Fig. 1 compares
several approaches to implement Similarity Joins. The
implementation of SJ as integrated database operators has the
following key advantages: (i) SJ database operators can be
interleaved with other regular and similarity-aware operators
and their results pipelined for further processing; (ii)
important optimization techniques, e.g., pushing certain
filtering operators to lower levels of the execution plan, pre-
aggregation, and the use of materialized views can be
extended to the new operators; and (iii) the implementation of
these operators can reuse and extend other operators and
structures to handle large datasets, and use the cost-based
query optimizer machinery to enhance query execution time.

This paper focuses on the study of similarity joins as first-
class database operators. Its main contributions are:
• We study the similarity join as a first-class database

operator, its interaction with other non-similarity and
similarity-based operators, and its implementation as
integrated component of the DBMS query processing and
optimization engine.

• We present the different types of similarity joins,
introduce a new useful similarity join type, the Join-
Around, and propose SQL syntax to express similarity
join predicates.

• We analyze multiple transformation rules for the SJ
operators. These rules enable query optimization through
the generation of equivalent query execution plans. We

study: (i) multiple core equivalence rules for SJ operators;
(ii) the main theorem of Eager and Lazy aggregation for
queries with similarity join and similarity group-by; (iii)
the scenarios in which similarity predicates can be pushed
from similarity join to similarity group-by; and (iv)
equivalence rules between different SJ operators and
between SJ and the similarity group-by operator.

• We describe an efficient implementation of two SJ
operators, the Epsilon-Join and Join-Around, as core
DBMS operators. We consider the case of multiple SJ
predicates and one-dimensional (1D) attributes.

• We evaluate the performance and scalability properties of
our implementation of the Epsilon-Join and Join-Around
operators in PostgreSQL. The execution time of Join-
Around is less than 5% of the one of the equivalent query
that uses only regular operators while Ɛ-Join’s execution
time is 20 to 90% of the one of its equivalent regular
operators based query for the useful case of small Ɛ
(0.01% to 10% of the domain range).

• We also evaluate experimentally the effectiveness of the
proposed transformation rules and show they can generate
plans with execution times that are only 10% to 70% of
the ones of the initial query plans.

The rest of this paper is organized as follows. Section II
discusses the related work. Section III presents the different
types of SJ and the proposed syntax to specify their similarity
predicates. Section IV studies the equivalence rules among SJ
and other regular and similarity-aware operators. Section V
presents implementation guidelines based on a prototype
realization of two SJ operators within PostgreSQL. Section VI
reports the performance evaluation of the implemented
operators and Section VII presents the conclusions and
directions for future research.

II. RELATED WORK
Several types of similarity join, and corresponding

implementation strategies, have been proposed in the literature,
e.g., range distance join (retrieves all pairs whose distances
are smaller than a pre-defined threshold) [1], [2], [3], [8], [9],
[10], k-Distance join (retrieves the k most-similar pairs) [4],
and kNN-join (retrieves, for each tuple in one table, the k
nearest-neighbors in the other table) [5], [6], [7]. The range
distance join, also known as the Ɛ-Join, has been the most
studied type of similarity join. Among its most relevant
implementation techniques, we find approaches that rely on
the use of pre-built indices, e. g., eD-index [8] and D-index
[9]. These techniques strive to partition the data while
clustering together similar objects. However, this approach
may require rebuilding the index to support queries with
different similarity parameter values, i.e., epsilon.
Furthermore, eD-index and D-index are directly applicable
only to the case of self-joins. Several non-index-based
techniques have also been proposed to implement the Ɛ-Join.
EGO [10], GESS [11], and QuickJoin [12] are three of the
most relevant non-index-based algorithms. The Epsilon Grid
Order (EGO) algorithm [10] imposes an epsilon-sized grid
over the space and uses an efficient schedule of reads of

blocks to minimize I/O. The Generic External Space Sweep
(GESS) algorithm [11] creates hypersquares centered on each
data point with epsilon length sides, and joins these
hypersquares using a spatial join on rectangles. The Quickjoin
algorithm [12] recursively partitions the data until the subsets
are small enough to be efficiently processed using a nested
loop join. The algorithm makes recursive calls to process each
partition and a separate recursive call to process the “windows”
around the partition boundary. Quickjoin has been shown to
perform better than EGO and GESS [12].

Also, of importance is the work on similarity join
techniques that make use of relational database technology
[17], [18], [19]. These techniques are applicable only to string
or set-based data. The general approach pre-processes the data
and query, e.g., decomposes data and query strings into sets of
q-grams, and stores the results of this stage on separate
relational tables. Then, the result of the similarity join can be
obtained using standard aggregate/group-by/join SQL
statements. Indices on the pre-processed data are used to
improve performance. A key difference of this work with our
contributions in this paper is that we focus on studying the
properties, optimization techniques, e.g., pre-aggregation and
query transformation rules, and implementation techniques of
several types of similarity joins as database operators
themselves rather than studying the way a SJ can be answered
using standard operators. In fact, several of the discussed
properties for epsilon-join in this paper are also applicable to
the operators proposed in [17] and [18]. Moreover, the
implementation section of our work focuses on SJ on
numerical data rather than string data.

A related type of join is the band join introduced in [32].
The join predicate of this join type has the form S.s-Ɛ1≤R.r≤
S.s+Ɛ2. A key difference of our work with the work on band
joins is that band joins represent only a special case of one of
the four types of joins considered in our study. Specifically, a
band join where Ɛ1=Ɛ2 is a special case of Ɛ-Join for the case
of 1D data. We propose transformation rules and properties
for similarity joins that apply in general to multi-dimensional
data. Moreover, a key goal of our implementation is to take
advantage of the mechanisms and data structures already
available in most DBMS’ engines to facilitate the integration
of similarity joins into real world DBMSs. The
implementation of band joins in [32] makes use of specialized
sampling, partitioning, and page replacement mechanisms.

Some recent work in the area of similarity joins has focused
on: proposing a compact way to represent the output of an
epsilon join [11], i.e., reporting groups of nearby points
instead of every join link; efficient algorithms for in-memory
similarity join with edit distance constraints [14]; algorithms
for near duplicate detection that exploit the ordering of tokens
in a record to reduce the number of required distance
computations [15]; and similarity join algorithms that exploit
sorting and searching capabilities of GPUs [16].

The extension of other standard operations to their
similarity-based counterparts, e. g., similarity selection [20],
[21], [22], [23], and similarity grouping [24], has been studied
previously. Among the important recent contributions in this

area are: the study of fast indices and algorithms for set
similarity selection using semantic properties that allow
pruning large percentages of the search space [20], a
quantitative cost-based approach to build high-quality grams
to support selection queries on strings [21], a method that
finds all data objects that match with a given query object in a
low-dimensional subspace instead of the original full space
[22], and flexible dimensionality reduction techniques to
support similarity search using the Earth Mover’s Distance
[23]. Of special interest is the work on Similarity Group-by
(SGB) presented in [24]. SGB is an extension of the group-by
database operator that supports the formation of groups of
similar objects. Three SGB instances are introduced, i.e.,
group-around, unsupervised group-by, and group-by with
delimiters; and are shown to have good execution time and
scalability properties with at most only 25% increase in
execution time over the regular group-by [24]. We study the
interaction and equivalences between SJ and SGB.
Furthermore, we discuss scenarios in which the similarity
predicate of SJ can be pushed partially or totally to SGB.

The work in [25] proposes an algebra for similarity-based
queries. This work presents the extension of simple algebra
rules, e.g., pushing selection into join, to the case of similarity
operators. The work in [26] proposes an extension to the
relational algebra to support similarity queries with several
similarity predicates combined using the Boolean operators
and, or, and not. However, [26] does not consider similarity
joins or queries that combine non-similarity and similarity
predicates. [27] proposes an extended SQL syntax to express
queries that use both non-similarity and similarity predicates.
The work in [28] presents a cost model to estimate the number
of I/O accesses and distance calculations to answer similarity
queries over data indexed using metric access methods. Both
[27] and [28] only consider range distance and knn-joins. A
framework for similarity query optimization is presented in
[29]. This work makes use of simple equivalence rules to
generate multiple alternative query plans. The main difference
between [25], [26], [27] and our work is that we focus on
analyzing in detail the properties and equivalence rules that
involve the different kinds of similarity join. Our study
considers four types of SJ, the equivalences among them and
with the similarity group-by operator. Furthermore, we study
extensions of the important Lazy and Eager aggregation
transformations to the case of similarity join queries.

Some of the optimization techniques of SJ presented in this
paper build on previous work on optimization of regular non
similarity queries. Larson et al. study pull-up and push-down
techniques that allow the query optimizer to move aggregation
operators up and down the query plan [30], [31]. These
techniques enable complete [30] or partial [31] pre-
aggregation that can reduce significantly the input size of a
join and decrease the execution time of an aggregation query.

III. SIMILARITY JOIN OPERATORS
The generic definition of the Similarity Join (SJ) operator is

as follows:
𝐴𝐴 ⋈𝜃𝜃𝑆𝑆 𝐵𝐵 = {〈𝑎𝑎, 𝑏𝑏〉 | 𝜃𝜃𝑆𝑆(𝑎𝑎, 𝑏𝑏), 𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵}

ε-Join: SELECT … FROM A, B
 WHERE A.a WITHIN ε OF B.b

Around-Join: SELECT … FROM A, B
 WHERE A.a AROUND B.b [MAX_DIAMETER 2r]
kNN-Join: SELECT ... FROM A, B
 WHERE B.b k NEAREST_NEIGHBOR_OF A.a
kD-Join: SELECT ... FROM A, B
 WHERE A.a k TOP_CLOSEST_PAIRS B.b

Fig. 2 Extended SQL syntax for similarity join predicates

A

ε

k=2

ε-Join

B A B A B

Join-AroundkNN-Join

A B

kD-Join

k=2
r

Fig. 3 Types of Similarity Join

where θs represents the similarity join predicate. This
predicate specifies the similarity-based conditions that the
pairs <a,b> need to satisfy to be in the similarity join output.
The similarity join predicates for the similarity join operators
considered in our study are as follows.
• Range Distance Join (Ɛ-Join):

 𝜃𝜃𝜀𝜀 ≡ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝜀𝜀
• kNN-Join:

 𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 ≡ 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑎𝑎
• k-Distance-Join (kD-Join):

𝜃𝜃𝑘𝑘𝑘𝑘 ≡ 〈𝑎𝑎, 𝑏𝑏〉 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝
• Join-Around (A-Join):

 𝜃𝜃𝐴𝐴,𝑀𝑀𝑀𝑀=2𝑟𝑟 ≡ 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎
 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝑟𝑟

The range distance, kNN, and k-Distance join operators are
common and extensively used types of similarity join. The
Join-Around is a new useful type of similarity join that
combines some properties of both the range distance and kNN
joins. Every value of the first joined set is assigned to its
closest value in the second set. Additionally, only the pairs
separated by a distance of at most r are part of the join output.
MD stands for Maximum Diameter and r=MD/2 represents
the Maximum Radius. As presented in Section IV, the Join-
Around operator with MD=∞ is equivalent to the kNN-Join
for k=1. Some queries that show the usefulness of this new
type of similarity join are presented later in this section.

Fig. 2 shows an extension of SQL syntax to express the
different types of similarity join predicates. Fig. 3 shows
examples of the four types of similarity join operators when
they are applied to two numerical datasets.

Similarity joins are core operations in multiple application
domains, e.g., data cleaning, pattern recognition,
bioinformatics, multimedia, phenomena detection on sensor
networks, marketing analysis, etc. Many of these scenarios,
e.g., pattern recognition and bioinformatics, inherently need
the support of similarity joins on multidimensional data.
However, there are also many application scenarios, e.g.,
marketing analysis and phenomena detection on sensor

networks, that can greatly benefit from the use of similarity
joins on one dimensional data. Fig. 4 gives four similarity
queries that use similarity joins to answer business-oriented
questions in a decision support system. The presented
similarity queries are extensions of several non-similarity-
based TPC-H queries [33]. The similarity queries in Fig. 4
illustrate that the use of similarity joins allows answering
more complex and interesting business questions.

IV. OPTIMIZING SIMILARITY JOINS
This section presents the study of similarity join properties

and techniques that enable the optimization of similarity join
queries through the generation of alternative execution plans.
This section introduces: (i) core equivalence rules that exploit
specific properties of SJs, (ii) equivalence rules between
multiple SJ operators and between SJ and similarity group-by
(SGB) operators, and (iii) the study of Eager and Lazy
transformation techniques that exploit pre-aggregation using
group-by and similarity group-by to significantly reduce the
amount of data to be processed by SJs.

A. Core Equivalence Rules
This section presents multiple equivalence rules that

involve the different SJ operators. This section not only
considers the extension of common equivalence rules to the
case of similarity joins, but particularly also studies scenarios
that exploit certain specific properties of SJs to enable more
effective query transformations. The rules in this section and
in section IV.B use the notation presented in Fig. 5. The
examples assume the following relations’ content:
E1=E2=E3={1,2,...,100}, and E4={21,22,...,25}.

1) Basic Distribution of Selection over SJ: The regular
selection operation distributes over the similarity join
operations according to the following rules.

When all the attributes of the selection predicate θ involve
only the attributes of one of the expressions being joined (E1):
a. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2

b. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 𝐸𝐸2

c. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2

When the selection predicates θ1 and θ2 involve only the
attributes of E1, and E2, respectively:
d. 𝜎𝜎𝜃𝜃1∧𝜃𝜃2�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃1(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 (𝜎𝜎𝜃𝜃2(𝐸𝐸2))

Usage: In the RHS of these rules, the selection operator is
pushed under the SJ operators to reduce the number of tuples
to be processed by the join. The transformation from the LHS
expression to the RHS one can generate low cost plans
because in general SJ operators are expected to be more costly
than selection filters. Fig. 6.a presents an example of rule 1.a.
The numbers next to the arrows represent the number of
flowing tuples in the query pipeline. The SJ operator of the
LHS expression processes a total of 200 tuples while the one
of the RHS expression only processes a total of 105 tuples.

2) Pushing Selection Predicate under Originally Unrelated
Join Operand: In the equivalence rules presented in Section

Business Question: Study how well the order priority system works around
dates of interest (holydays, marketing campaigns, etc.)

Select d_refdate, o_orderpriority, count(*) as order_count from orders, DatesOfInterest
Where o_orderdate AROUND d_refdate
 and exists (Select * from lineitem

 Where l_orderkey = o_orderkey and l_commitdate < l_receiptdate)
group by o_orderpriority, d_refdate order by o_orderpriority, d_refdate

Original TPC-H Query
Q4 – Business Question: Study how well the order priority system is

working in a given quarter
Similarity-aware Query

Business Question: Study the revenue volume done between local
(nearby) suppliers and customers (Revenue of “short distance”orders)

Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue
From customer, orders, lineitem, supplier, nationSupp NS, nationCust NC, region
Where c_custkey = o_custkey and l_orderkey = o_orderkey
 and l_suppkey = s_suppkey and c_location WITHIN Ɛ TO s_location
 and c_nationkey = NC.n_nationkey and s_nationkey = NS.n_nationkey
 and NC.n_regionkey = NS.n_regionkey and NC.n_regionkey = r_regionkey
 and r_name = '[REGION]' and o_orderdate >= date '[DATE]'
 and o_orderdate<date '[DATE]'+interval '1' year
group by n_name order by revenue desc

Original TPC-H Query
Q5 – Business Question: Study the revenue volume done between

suppliers and customers of the same country
Similarity-aware Query

Business Question: Forecast revenue change that would have resulted
from eliminating certain discounts on certain date ranges of interest

(holydays, marketing campaigns, etc.)
Select d_refdate, sum(l_extendedprice*l_discount) as revenue
From lineitem, DatesOfInterest
Where l_shipdate AROUND d_refdate MAX_SIZE 'D' day
 and l_discount between [DISCOUNT] - 0.01 and [DISCOUNT] + 0.01
 and l_quantity < [QUANTITY]
Group by d_refdate;

Original TPC-H Query
Q6 – Business Question: Forecast revenue change that would have

resulted from eliminating certain discounts in a given year
Similarity-aware Query

Business Question: Classify customers based on their buying power
Select c_name, c_custkey, r_refRevlevel
From (Select c_name, c_custkey, sum(l_extendedprice) as TotalBuy
 From customer, orders, lineitem
 Where o_orderkey in (Select l_orderkey From lineitem
 Group by l_orderkey Having sum(l_quantity) > [QUANTITY])
 and c_custkey = o_custkey and o_orderkey = l_orderkey
 Group by c_name, c_custkey), RevenueLevelsOfInterest
Where TotalBuy AROUND r_refRevlevel Order by r_refRevlevel

Original TPC-H Query
Q18 – Business Question: Find large volume(quantity) customers. Large

volume orders are the ones with a total quantity greater than a given level.
Similarity-aware Query

Similarity Query Example 1

Similarity Query Example 2

Similarity Query Example 3

Similarity Query Example 4

Fig. 4 Examples of the use of Similarity Join

Ei a relation
ei an attribute of Ei

σ and the selection and join operators respectively
θ a non similarity predicate

θƐ, θkNN, θkD, θA the different similarity join predicates as defined in section III

GAγF(AA)(R)

the aggregation operator
is the relation being aggregatedR
 the aggregation attributesAA
 the aggregation functionsF
the grouping attributes. It can be a simple attribute in the
case of regular grouping, or an expression like E1.e1
around E2.e2 in the case of Similarity Group Around
(SGB-A), a type of similarity grouping that groups the
tuples of E1 around a set of central points (tuples of E2)
assigning every tuple of E1 to the group of the central
point with the minimum dist (E1.e1, E2.e2) [24]

GA

Fig. 5 Notation for equivalence rules

IV.A.1, each selection predicate θ is pushed only under the
join operand that contains all the attributes referenced in θ. In
the case of the Ɛ-Join operator, the filtering benefits of
pushing a selection predicate θ can be further improved by

pushing θ under both operands of the join as shown in the
following equivalence rule.

a. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 (𝜎𝜎𝜃𝜃±𝜀𝜀(𝐸𝐸2))
where all the attributes of the selection predicate θ involve
only the attributes of E1, and the selection predicate θ±Ɛ
represents a modified version of θ where each condition is
“extended” by Ɛ and is applied on the join attribute of E2. For
example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ.
Usage: The single selection operator of the LHS expression is
used to filter both inputs of the join in the RHS expression.
The transformation from the LHS expression to the RHS one
can generate a plan with even lower cost than the one
generated applying rule 1.a. Fig. 6.b presents an example
where the SJ operator of the LHS expression processes a total
of 200 tuples while the one of the RHS expression only
processes a total of 20 tuples.

3) Basic Associativity of SJ Operators: Similarity Join
operators are associative using the following rules.

Rules with the same type of similarity join:
a. �𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1 𝐸𝐸2� ⋈𝜃𝜃𝜀𝜀2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝜀𝜀2 𝐸𝐸3)
b. �𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1 𝐸𝐸2� ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)
c. �𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1 𝐸𝐸2� ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2 𝐸𝐸3)

Rules that combine different types of similarity and regular
join:
d. �𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1 𝐸𝐸2� ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2 𝐸𝐸3)
e. �𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1 𝐸𝐸2� ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)
f. �𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1 𝐸𝐸2� ⋈𝜃𝜃2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃2 𝐸𝐸3)
g. (𝐸𝐸1 ⋈𝜃𝜃1 𝐸𝐸2) ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)
h. (𝐸𝐸1 ⋈𝜃𝜃1 𝐸𝐸2) ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2 𝐸𝐸3)

where θ1, θƐ1, θA1, and θkNN1 involve attributes from only E1
and E2; θ2, θƐ2, θA2, and θkNN2 involve attributes from only E2
and E3.
Usage: Given an expression with several SJ operations, the
plan cost depends on how many tuples need to be processed
by each SJ operator and the processing cost of each specific
type of SJ. Thus, the cost depends on which SJ operation is
computed first. This will determine the number of flowing
tuples to be processed by the remaining SJ operators. Fig. 6.c
presents an example of rule 3.a. The LHS expression
computes first the less selective SJ and processes a total of
1158 tuples in the second one. The RHS expression computes
first the most selective SJ and processes only 200 tuples in the
second one. The optimizer will probably select the RHS plan.

4) Associativity Rule that Enables Join on Originally
Unrelated Attributes: In the equivalence rules presented in
Section IV.A.3, each join predicates involves the same
attributes in both sides of the rule. In the case of Ɛ-Join, when
the attributes e1 of E1 and e2 of E2 are joined using Ɛ1 and the
result joined with attribute e3 of E3 using Ɛ2, there is an
implicit relationship between e1 and e3 that is exploited by the
following equivalence rule.

σ

E1

a) Distribution of selection over
SJ

S

E2

e1 within
5 of e2

20<e1≤25

100 100

1058

55

Q1: SELECT e1, e2 FROM E1, E2
WHERE e1 within 5 of e2 and 20<e1<=25

σ

E1

S

E2

100
100

55

5

σ

E1

b) Pushing selection predicate under
originally unrelated join operand

S

E2

e1 within
5 of e2

20<e1≤25

100 100

1058

55

σ

E1

S

E2

100 100

55

5

20<e1≤25
σ

15<e2≤3020<e1≤25

15

c) Associativity of SJ operators

Q2: SELECT e1, e2, e2 FROM E1,
E2, E3 WHERE e1 within 5 of e2

and e2 within 0.5 of e3

E1

S

E2

100

100

1058

1058

S

E3

e1 within
5 of e2

e2 within
0.5 of e3

100
E2

S

E3

100
100

1058

100

S

E1

e1 within
5 of e2

100

e2 within
0.5 of e3

d) Associativity rule that enables join on
originally unrelated attributes

Q3: SELECT e1, e2, e4 FROM E1,
E2, E4 WHERE e1 within 5 of e2

and e2 within 5 of e4

E1

S

E2

100

5

605

1058

S

E4

e1 within
5 of e2

e2 within
5 of e4

100

E1

S

E4

100

100

605

55

S

E2

e1 within 5 of e2,
e2 within 5 of e4

5

e1 within
10 of e4

Fig. 6 Extended SQL syntax for Similarity Join predicates

a. �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1 𝑒𝑒2 𝐸𝐸2� ⋈𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3 𝐸𝐸3 ≡
 �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1+𝜀𝜀2 𝑒𝑒3 𝐸𝐸3� ⋈(𝑒𝑒1 𝜃𝜃𝜀𝜀1 𝑒𝑒2)∧(𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3) 𝐸𝐸2

Notice that this rule is expressed using an extended notation
that specifies explicitly the attributes being joined.
Usage: The RHS expression of this rule produces a bottom
join that joins attributes that are not joined in the LHS
expression. The transformation from the LHS expression to
the RHS one has the potential to generate a lower cost plan
when the RHS’ bottom join outputs a low number of tuples.
Fig. 6.d presents an example of rule 4.a. The LHS expression
processes a total of 200 tuples in the first SJ and 1063 tuples
in the second one. The LHS expression processes 105 tuples
in the first SJ and 155 tuples in the second one. Notice that the
top RHS’ SJ has a slightly more complex SJ predicate.

5) Commutativity of SJ Operators: Some similarity Join
operations are commutative:
a. 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2 ≡ 𝐸𝐸2 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸1
b. 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘 𝐸𝐸2 ≡ 𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘 𝐸𝐸1

kNN-Join and Join-Around operators are not commutative.
Usage: Similarly to the case of regular join, the cost of a given
implementation of a SJ operator can be different when
considering the larger relation to be joined as the inner or
outer input of the operator. This rule is used to consider both
cases during cost-based optimization.

Additionally, other rules like the distribution of projection
over SJ and the combination of selection predicates with SJ
predicates apply to the case of SJs in a similar way they do to
the case of non-similarity joins.

B. Equivalence Among Similarity Operators
The Join-Around and the Similarity Group Around (SGB-A)

operators are equivalent in the following way:

a. 𝛾𝛾𝐹𝐹(𝐴𝐴𝐴𝐴)(𝐸𝐸1)𝑒𝑒1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎 𝐸𝐸2.𝑒𝑒2 ≡ 𝛾𝛾𝐹𝐹(𝐴𝐴𝐴𝐴)(𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝐴𝐴 𝑒𝑒2 𝐸𝐸2)𝑒𝑒2
i.e., a SGB-A operation can be transformed into a regular
Group-by applied to the result of a Join-Around operation.
Usage: This rule can be used to support a similarity grouping
operation using the implementation of the Join-Around.

The following rules describe the special cases in which
different similarity join operators are equivalent.
b. 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴,𝑀𝑀𝑀𝑀 =∞ 𝐸𝐸2 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 (𝑘𝑘=1) 𝐸𝐸2
c. 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴,𝑀𝑀𝑀𝑀 =2𝜀𝜀 𝐸𝐸2 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2,

if the joins operate on one-dimensional data and 2Ɛ <
minimum distance of consecutive points in E2 , i.e., there
is no overlap in the MD ranges.

d. 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘 𝐸𝐸2 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2,
if Ɛ = distance of the k-th (longest) link in LHS.

C. Eager and Lazy Transformations with SJ and SGB
An important query optimization approach is the use of

pull-up and push-down techniques to move the grouping
operator up and down the query tree. The main Eager and
Lazy aggregations theorem introduced in [30] enables several
pull-up and push-down techniques for the regular, i.e., non-
similarity, join and group-by operators. This theorem allows
the pre-aggregation of data before the join operator to reduce
its input size. The main theorem is extended in [24] to the case
of regular join and similarity group-by (SGB). This subsection
presents the extension of the main theorem to the case of
similarity join and (regular or similarity) group-by.
Furthermore, we study scenarios in which the similarity
predicate of SJ operators can be pushed totally or partially to
the grouping operator.
General usage: Figures 8, 9, 10, and 11 illustrate several
cases of the eager and lazy transformations that will be studied
in detail later in this section. In general, the single aggregation
operator of the Lazy approach is split into two parts in the
Eager approach. The first part pre-evaluates some aggregation
functions and calculates the count before the join. The second
part uses the intermediate information to calculate the final
results after the join. Both the eager and lazy versions of a
query should be considered during query optimization since
neither of them is the best approach in all scenarios. Joins with
high selectivity tend to benefit the Lazy approach while
aggregations that reduce considerably the number of tuples
that flow in the pipeline tend to benefit the Eager approach.

The presentation of the theorems and proofs in this section
use the notation presented in Fig. 7. This notation is used
because: (i) it allows a direct comparison with analogous
theorems for regular operators [30] and for similarity grouping
[24] that use a similar notation, and (ii) it uses a convenient
representation of operators’ arguments that facilitates the
presentation of the theorems and proofs. The Eager and Lazy
aggregation theorems for the case of (i) regular join and
group-by [30], and (ii) regular join and similarity group-by
[24] are presented next. These theorems are referenced in the
new extensions of the theorem studied later in this section.
Theorem 1 Eager/Lazy Aggregation Main Theorem for
Group-by and Join: The following two expressions

g[GA]R regular grouping of relation R on grouping attributes GA

g[GA; Seg]R
similarity grouping of relation R on grouping attributes GA
using segmentations Seg. The domain of the nth element of GA
is partitioned by the nth element of Seg

F[AA]R aggregation operation of a previously grouped table R
F and AA sets of aggregation functions and columns, respectively

σ, πD, πA, UA
and

selection, projection with and without duplicate elimination, set
union without duplicate elimination, theta-join, and similarity
join respectively

Rd a table that always contains aggregation attributes
Ru a table that may or may not contain aggregation attributes

GAd and GAu the grouping columns of Rd and Ru, respectively
AA all the aggregation columns

AAd and AAu the subsets of AA that belong to Rd and Ru, respectively
Cd and Cu the conjunctive predicates on columns of Rd and Ru, respectively

C0 the conjunctive predicates involving columns in both Ru and Rd
α(C0) the columns involved in C0
GAd

+ = GAd U α(C0)-Rd, columns that participate in join and grouping
F the set of all aggregation functions

Fd and Fu the members of F applied on AAd and AAu, respectively

FAA the resulting columns of the application of F on AA in the first
grouping operation of the eager strategy

Seg the set of segmentation of the attributes in GA
Segd and Segu the subsets of Seg for the attributes in GAd and GAu, respectively

NGAd a set of columns in Rd

CNT the column with the result of Count(*) in the first aggregation
operation of the eager approach

FAAd
the set of columns, other than CNT, produced in the first
aggregation operation of the eager approach

Fua
the duplicated aggregation function of Fu, e.g., if Fu=(SUM,
MAX), then Fua=(SUM, MAX, count) = (SUM*count, MAX)

Fig. 7 Algebraic notation for Eager and Lazy transformation theorems

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]
 g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈𝐶𝐶0 Ru)
 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])
 πA[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu]σ[Cu]
 (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]
 g [NGAd]σ[Cd]Rd) ⋈𝐶𝐶0 Ru)

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2)
Fu contains only class C or D aggregation functions [30], (3)
NGAd → GAd

+ holds in σ[Cd]Rd, and (4) α(C0) ∩ GAd = Ø.
Expression E1 represents the Lazy approach while

expression E2 represents the Eager approach.
Theorem 2 Eager/Lazy Aggregation Main Theorem for
Similarity Group-by and Join: The following expressions

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]
 g [GAd, GAu; Seg]σ[Cd ^ Cu] (Rd ⋈𝐶𝐶0 Ru)
 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])
 πA[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu; Segu]σ[Cu]
 (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]
 g [NGAd; Segd]σ[Cd]Rd) ⋈𝐶𝐶0 Ru)

are equivalent under the same conditions as Theorem 1.

1) Eager and Lazy Transformations with GB and SJ: The
Eager and Lazy aggregation transformations can be extended
to the case of similarity joins as shown in Theorem 3.
Theorem 3 Eager/Lazy Aggregation Main Theorem for
Group-by and Similarity Join: The following expressions

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]
 g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈�𝐶𝐶0 Ru)
E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu]σ[Cu]
 (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]
 g [NGAd]σ[Cd]Rd) ⋈�𝐶𝐶0 Ru)

where ⋈�C0 is kNN-Join, Ɛ -Join, or A-Join; are equivalent
under the same conditions as Theorem 1.
Usage: Fig. 8 illustrates an example of the application of this
theorem. The SJ of the Lazy aggregation expression processes
a total of 7 tuples while the grouping node processes 5 tuples.
In the Eager aggregation expression all the tuples of T1 get
combined into one tuple in the bottom grouping node and the
SJ and top grouping operators only need to process 3 and 1
tuples respectively. In scenarios where T1 has a significant
number of tuples with the same value of (G1, J1) the
optimizer will probably favor the Eager approach; otherwise
the Lazy approach will probably be selected.
Proof sketch: The validity of this theorem relies on the
following properties.
Given Rd' and Ru' instances of Rd and Ru respectively, the
result of (Rd' ⋈�𝐶𝐶0 Ru') is equivalent to the result of (Rd' ⋈𝜃𝜃 Ru')
where θ = disjunction of (Rd.C0d=x ^ Ru.C0u=y) for every
different link (x,y) of the result of (Rd' ⋈�𝐶𝐶0 Ru'). (1)
θ, as defined in (1), remains unchanged and valid when Rd' is
augmented with tuples that have already present values of
Rd'.C0d, i.e., duplicates, or when such tuples are removed from
Rd'. (2)

The validity of Theorem 3 can be shown by following these
steps:

For every Rd’ and Ru’ instances of Rd and Ru, respectively,
1. E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]

 g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈�𝐶𝐶0 Ru’)
 is equivalent to

 E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]
 g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈𝜃𝜃 Ru’),
 where θ is defined as in (1).
2. E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]
 g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈𝜃𝜃 Ru’)
 is equivalent to

 E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])
 πA[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu]σ[Cu]
 (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]
 g [NGAd]σ[Cd]Rd’) ⋈𝜃𝜃 Ru’)

 because of Theorem 1.
3. E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu]σ[Cu]
 (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]
 g [NGAd]σ[Cd]Rd’) ⋈𝜃𝜃 Ru’)

 is equivalent to
 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])

 πA[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu]σ[Cu]
 (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]
 g [NGAd]σ[Cd]Rd’) ⋈�𝐶𝐶0 Ru’)
since the grouping operation before the join merges only
tuples that share the same value of Rd’.C0d, and (2).

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2) GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

GB

SUM(S1) AS SS1,
CNT

G1 , G2

G1 , G2

b) Eager Aggregation a) Lazy Aggregation

G1 , J15 2

5

1

2

5

1

1

1

Q5: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE
J1 within 5 of J2 GROUP BY G1, G2

T1

1 11 5
1 11 10
1 11 5
1 11 5
1 11 5

G1 J1 S1

T2

1 11 5
2 20 10

G2 J2 S2

S
J1 within
5 of J2

S

J1 within
5 of J2

Fig. 8 Eager/Lazy transformation with GB and SJ

SGB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
SGB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1, CNT

G1 around {1,20},
G2 around {1,20}

b) Eager Aggregationa) Lazy Aggregation

5 2

5

1

5

1 2

1

1

Q6: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE
J1 within 5 of J2 GROUP BY G1 around {1,20}, G2 around {1,20}

T1

1 11 5
2 11 10
3 11 5
4 11 5
5 11 5

G1 J1 S1

T2

1 10 5
2 20 10

G2 J2 S2
S

S

J1 within
5 of J2

J1 within
5 of J2

G1,
G2 around {1,20}

G1 around
 {1,20}, J1

Fig. 9 Eager/Lazy transformation with SGB and SJ

2) Eager and Lazy Transformations with SGB and SJ: The
Eager and Lazy Aggregation transformations can be extended
to the case of similarity join and similarity group-by as shown
in Theorem 4.
Theorem 4 Eager/Lazy Aggregation Main Theorem for
Similarity Group-by and Similarity Join: The following
two expressions

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]
 g [GAd, GAu; Seg]σ[Cd ^ C0 ^ Cu] (Rd ⋈�𝐶𝐶0 Ru)
 E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd])
 πA[GAd, GAu, AAu, FAAd, CNT]
 g [GAd, GAu; Segu]σ[C0 ^ Cu]
 (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]
 g [NGAd; Segd]σ[Cd]Rd) ⋈�𝐶𝐶0 Ru)

where ⋈�𝐶𝐶0 is kNN-Join, Ɛ-Join, or A-Join; are equivalent
under the same conditions as Theorem 1.
Usage: An example of the use of this theorem is presented in
Fig. 9. The number of tuples flowing in the pipelines is similar
to the one of the previous example. The bottom grouping node
of the Eager approach merges tuples that have: (i) the same
value of J1 and (ii) values of G2 that belong to the same
similarity group. In the example all the tuples of T1 are
merged even though they have different values of G1.
Proof sketch: The validity of this theorem relies on the
validity of theorems 2 and 3.

3) Pushing Similarity Predicate from Ɛ-Join to GB: This
subsection and the following one explore ways to further
enhance the filtering power of the pre-aggregation step of the
Eager approach pushing down the similarity predicates from
the SJ operator to the grouping one. The equivalences

described in these subsections are enhancements over the one
presented in Section IV.C.1.

The similarity predicate of the Ɛ-Join can be (partially)
pushed down to a grouping operator as shown in Fig. 10. The
bottom aggregation of the Eager approach performs regular
aggregation on G1 and similarity aggregation SGB-A' on J1
around J2 with MAX_GROUP_DIAMETER = 2Ɛ. SGB-A' is a
variation of similarity group around (SGB-A) [24] that only
merges tuples that are linked to only one central point (J2) by
the Ɛ-Join. The value of J1 in a resulting tuple of SGB-A' can
be the value of the central point, i.e., J2, or any of the values
of J1 of the grouped tuples. In both cases, the Ɛ -Join of the
Eager approach will generate the correct join links. SGB-A'
generates at most one group per different value of J2, i.e.,
tuples with the same value of J2 in T2 are treated as a single
central point. The goal of pushing the similarity predicate
from SJ to the aggregation operator is to increase the number
of pre-aggregated tuples while maintaining a grouping
operator that can be executed quickly. SGB-A has been shown
to have an execution time not higher than 25% of that of the
regular group-by for one dimensional data. SGB-A' is
expected to perform similarly.
Usage: In the example presented in Fig. 10, the bottom
grouping node of the Eager approach merges all the tuples of
T1 even though they have different J1 values. Notice that
applying the transformation of Section IV.C.1 to this case
would generate five tuples rather than one as the result of the
bottom grouping node of the Eager approach.

The validity of this equivalence relies on the following
properties: (i) if two tuples t1a and t1b are grouped by the
bottom aggregation of the Eager approach around a center
point tuple, say t2, then t1a and t1b will always be matched
with t2 by the Ɛ-Join of the Lazy approach; and (ii) tuples that
are not merged with others at the bottom aggregation of the
Eager approach, are always processed in the same way in both
approaches.

4) Pushing Similarity Predicate from Join-Around to GB:
The similarity predicate of the Join-Around can be
(completely) pushed down to a grouping operator as shown in
Fig. 11. The bottom aggregation of the Eager approach
performs regular aggregation on G1 and similarity
aggregation SGB-A [24] on J1 around J2 with
MAX_GROUP_DIAMETER = 2Ɛ. The value of J1 in a
resulting tuple of SGB-A is the value of the central point, i.e.,
J2. This will enable generating the correct links using only a
regular join in the Eager approach. This regular join is still
required to obtain the values of G2 and S2. SGB-A generates
at most one group per different value of J2, i.e., tuples with
the same value of J2 in T2 are treated as a single central point.
Usage: As illustrated in Fig. 11, the Eager approach avoids
completely the use of the SJ operator, using instead a fast
similarity group-by operator and a regular join. In the example
shown in Fig. 11, the bottom grouping node of the Eager
approach merges all the tuples of T1 even though they have
different values of J1; applying the transformation of Section
IV.C.1 would produce five tuples instead.

GB

T1 T2
(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1) AS SS1,
CNT

G1 , G2
G1 , G2

b) Eager Aggregation a) Lazy Aggregation

T2

G1,
J1 around'MGD=10 J2

R.r S.s

ε
ε

SGB-A'

 Group by
R.r around'MGD=2Ɛ S.s

5 2

5

1

5 2

1 2

1

1

Q7: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE
J1 within 5 of J2 GROUP BY G1, G2

T1

10 18 5
10 19 5
10 20 10
10 21 5
10 22 5

G1 J1 S1

T2

20 20 10
15 40 5

G2 J2 S2

S

S

J1 within
5 of J2

J1 within
5 of J2

Fig. 10 Pushing similarity predicate from Ɛ-Join to GB

GB

T1 T2

(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T2
(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

J1←J2, SUM(S1)
AS SS1, CNT

G1 , G2
G1 , G2

b) Eager Aggregation a) Lazy Aggregation

J1=J2

G1,
J1 aroundMGD=10 J2

Join

R.r S.s

ε
ε

SGB-A

Group by
R.r aroundMGD=2Ɛ S.s

SGB5 2

5

1

1

1

1 2S

Q8: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE
J1 around J2 MAX_DIAMETER 10 GROUP BY G1, G2

T1

10 18 5
10 19 5
10 20 10
10 21 5
10 22 5

G1 J1 S1

T2

20 20 10
15 40 5

G2 J2 S2

T1(G1,J1,S1) T2
5 2

J1 around J2
MD=10

Fig. 11 Pushing similarity predicate from Join-Around to GB

The validity of this equivalence relies on the following
properties: (i) if two tuples t1a and t1b are grouped by the
bottom aggregation of the Eager approach around a center
point tuple t2, t1a and t1b are always matched with t2 by the
Join-Around of the Lazy approach; and (ii) if two tuples t1a
and t1b share the same value of G1 and are linked to tuple t2
in the Lazy approach, then t1a and t1b will always be grouped
by the bottom aggregation of the Eager approach.

V. IMPLEMENTING SIMILARITY JOIN
This section presents the guidelines to implement two

similarity join operators, Ɛ-Join and Join-Around, inside the
query engine of standard RDBMSs. Although the presentation
is intended to be applicable to any RDBMS, some specific
details refer to our implementation in PostgreSQL. One of the
goals of the implementation is to reuse and extend already
available routines and structures to minimize the effort needed
to realize these operators. The Ɛ-Join and Join-Around
operators are implemented as extensions of the Sort Merge
Join (SMJ) operator and consider the case of one dimensional
numeric data and multiple similarity join predicates.

To add support for SJs in the parser, the raw-parsing
grammar rules, e.g., yacc rules in the case of PostgreSQL, are
extended to recognize the syntax of the various new similarity
join predicates presented in Section III. The parse-tree and
query-tree data structures are extended to include the type and
parameters, e.g., Ɛ, MD, of SJ predicates. The routines in
charge of transforming the parse tree into the query tree are
updated accordingly to process the new fields in the parse tree.

A. The Optimizer
Fig. 12.a presents the structure of the plan tree when one

similarity join predicate is used. Given that the

implementation is based on Sorted Merge Join, sort nodes that
order by the similarity join attributes are added on top of the
input plan trees. This order is assumed by the routines that
find the similarity matches, i.e., links. When multiple
similarity join predicates are used, they are processed one at a
time. Fig. 12.b gives the structure of the plan tree generated
when two similarity join predicates, a~b and c~d, are used.
The bottom similarity join makes use of a~b while the top one
uses c~d. The routines that find the similarity matches are
presented in Section V.B. Another important change in the
optimizer is in the way the number of tuples generated by a
similarity aggregation node is estimated. This important
estimation is used to compare the cost of different query
execution plans. In the case of Join-Around, the number of
resulting tuples can be estimated as the number of tuples in
the inner input dataset. In the case of Ɛ-Join, more complex
techniques, e.g., employing histograms of the density of
elements in metric space [28], can be employed. The number
of output tuples of the kNN-Join can be estimated as (# of
tuples of outer input)*min(k, # of tuples of inner input) while
the one of the kD-Join can be estimated as min(# of tuples of
outer input * # of tuples of inner input, k). The estimated
number of output tuples can be used to reduce the cost of
queries with several similarity join predicates. Since the order
of processing these predicates does not change the final result,
they can be arranged to minimize the overall cost of the query.

B. The Executor
When several similarity join predicates are used, the

constructed query plan uses several similarity join nodes
where the result of each node is pipelined to the next one as
illustrated in Section V.A. The executor routines that produce
the similarity links in a SJ node are expected to handle one
similarity join predicate. Additionally, they could be extended
to handle any number of regular join predicates. The tuples
received from the input plans have been previously sorted as
explained in Section V.A. The executor routines process the
input tuples synchronously following a plane sweep approach.

Fig. 13 presents the algorithms of the main operation of the
regular Sort Merge Join (13.a), Join-Around (13.b), and Ɛ-Join
(13.c). The sections that were modified to support the SJ
operators are shown in bold. It is clear from Fig. 13 that the
use of the already implemented machinery that supports
Sorted Merge Join as the basis to support similarity joins,
allows a fast and efficient implementation of both SJ operators.
The Sorted Merge Join algorithm in Fig. 13.a operates as
follows. Lines 1 and 2 initialize the outer and inner tuples.
Lines 4-9 advance the current inner and outer tuples until a
match is found. When a match is found, Line 10 marks the
inner tuple. Marking a tuple allows repositioning the inner
cursor to the marked tuple later in the process. This key
feature is already supported by the access method interface of
PostgreSQL. Lines 13-18 join the current outer tuple with the
current and following inner tuples as long as there is a match
between outer and inner. Once an inner tuple that fails the
match is found, the outer tuple is advanced (Line 19). Lines
20 to 24 test if the new outer tuple matches the marked tuple.
If this is the case the inner cursor is restored to the marked

Join-Around (a,b), or
Epsilon-JoinƐ (a,b)

1. SELECT … FROM T1, T2
 WHERE T1.a AROUND T2.b

Sort (a)

T1 T2

2. SELECT … FROM T1, T2
 WHERE T1.a WITHIN Ɛ T2.b

Join-Around (c,d), or
Epsilon-JoinƐ2 (c,d)

1. SELECT … FROM T1, T2, T3 WHERE
 T1.a AROUND T2.b AND T2.c AROUND T3.d

Sort (c)

T3

2. SELECT … FROM T1, T2, T3 WHERE T1.a
 WITHIN Ɛ1 OF T2.b AND T2.c WITHIN Ɛ1 OF T3.d

Join-Around (a,b), or
Epsilon-JoinƐ1 (a,b)

Sort (a)

T1 T2

a) One similarity join predicate b) Multiple similarity join predicates

Sort (b)

Sort (d)

Sort (b)

Fig. 12 Path/Plan trees for Join-Around and Ɛ-Join

tuple and the new match is processed, otherwise the process
continues looking for a new match.

In the presentation of the algorithms, we assume that there
is only one join predicate, i.e., the similarity predicate. The
algorithms can be easily extended to handle the case of
additional regular join predicates. The required changes to
support Ɛ -Join are presented in Fig. 13.b. As expected, the
function that evaluates if there is match between an outer and
an inner tuples (Lines 4, 18, and 20) needs to be extended. In
this case, the similarity predicate outer~inner is evaluated as
distance(outer,inner) ≤ Ɛ . The block that produces the join
links, in Lines 13-18, keeps track of the previous processed
input tuple, i.e., prevInner. This tuple is used in Line 20 to test
if there is a match between outer and prevInner. A positive
result of this test means that there is at least one tuple in the
range [mark, prevInner] that matches with the current outer. If
this is the case, we restore the inner cursor to mark. The break
command in Line 22 ensures that the process jumps to line 4
to look for a match. This is required since outer may not
match all the tuples in the range [mark, prevInner].

The required changes to support Join-Around are shown in
Figures 13.c and 14. At any point, the algorithm keeps track of
the current outer and inner and the next inner tuple, i.e.,
nextInner. Lines 2, 8, 16, and 22 in Fig. 13.c, and Lines 2 and
6 in Fig. 14 maintain the correct nextInner tuple. The function
that evaluates if there is match between an outer and an inner
tuples (used in Lines 5 and 20 in Fig. 13.c and Line 4 in Fig.
14) is also extended. In this case, the similarity predicate
outer~inner is evaluated as distance(outer, inner) < distance
(outer,nextInner). The function that evaluates if an inner tuple
matches another inner tuple (used in lines 4 and 18 in Fig.
13.c and in lines 1 and 3 in Fig. 14) evaluates the regular
equality operator on the join attribute values. The expression
outer>inner in line 1 of Fig. 14 ensures that the similarity join
attribute of the outer tuple is greater than the one of the inner
tuple. In contrast to the previous algorithms, when the process
reaches line 10, there is not necessarily a match. This happens
when there are consecutive inner tuples with the same join
attribute values and the similarity join attribute of outer is
greater than the one of inner. In this case, the inner cursor
needs to be advanced until it is possible to check if there is a
similarity match. This task is performed by check_match() as
presented in Fig. 14. If a match is found, then the inner cursor
is restored to mark and the process reports the join links.
Otherwise, the process starts looking for a match again in

SMJoin {
get initial outer tuple
get initial Inner tuple
do forever {
 while (outer != inner) {
 if (outer < inner)
 advance outer
 else
 advance inner
 }
 mark inner position

 do forever {
 do{
 join outer and inner

 advance inner position
 }
 while (outer == inner)
 advance outer position
 if (outer == mark)
 restore inner to mark

 else
 break
 }
}
}

INITIALIZE

SKIP_TEST

SKIPOUTER_ADVANCE

SKIPINNER_ADVANCE

SKIP_TEST

JOINTUPLES

NEXTINNER

NEXTOUTER
TESTOUTER
TESTOUTER

NEXTINNER

d. Statea. Sorted Merge Join

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

EpsilonJoin {
get initial outer tuple
get initial inner tuple
do forever {
 while (outer !~ inner) {
 if (outer < inner)
 advance outer
 else
 advance inner
 }
 mark inner position

 do forever {
 do{
 join outer and inner
 prevInner ← inner
 advance inner position
 }
 while (outer ~ inner)
 advance outer position
 if (outer ~ prevInner)
 restore inner to mark
 break
 else
 break
 }
}
}

b. Epsilon-Join

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

c. Join-Around
JoinAround {
get initial outer tuple
get initial inner and nextInner
do forever {
 while ((inner != nextInner)&&
 (outer !~ inner)) {

 advance inner and nextInner
 }
 mark inner position
 if (!check_match()) continue
 do forever {
 do{
 join outer and inner
 prevInner ← inner
 advance inner and nextInner
 }
 while (prevInner == inner)
 advance outer position
 if (outer ~ prevInner)
 restore inner to mark
 nextInner ← getNext(inner)
 else
 break
 }
}
}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27

INITIALIZE

TESTOUTER

SKIP_TEST

Fig. 13 Main operation of Epsilon-Join and Join-Around compared to the one of Sorted Merge Join

1
2
3
4
5
6
7
8
9

10
11

check_match() {
if ((inner == nextInner) && (outer>inner)){
 do {advance inner and nextInner}
 while(inner == nextInner)
 if (outer ~ inner)
 restore inner to mark
 nextInner ← getNext(inner)
 return True //similarity match
 else return False
}
return True //no need to advance to check match
}

Fig. 14 Routine check_match

line 4. The block that reports the join links is also modified to
keep track of the previous inner, i.e., prevInner. This block
(lines 13 to 18) outputs join links for the current inner and the
consecutive inner tuples that have the same value of the join
attribute. prevInner is used in line 18 to test if two consecutive
inner tuples have the same join attribute values. prevInner is
also used in line 20 to test if the new outer is closer to
prevInner than to inner. Notice that if the result of this test is
true, the new outer matches all the tuples in the range [mark,
prevInner] and the process continues reporting the join links
directly (line 13). The presented algorithms are coded in
PostgreSQL in the fashion of a state machine. Fig. 13.d shows
the states associated to the different tasks. The implementation
of Ɛ-Join and Join-Around use the same set of states employed
by SMJ.

The cost of the proposed SJ operators is close to the one of
SMJ for reasonably small Ɛ (for Ɛ-Join) and inner datasets
without many duplicates (for Join-Around) because: (i) every
outer tuple is read once in sequential order; (ii) the inner
tuples are read in an almost sequential order, restoring the
inner cursor to a previously read inner tuple is employed to
generate the correct SJ links; (iii) in Ɛ -Join, if the inner cursor
is restored, the length of the jump, i.e., distance from previous
inner to marked tuple, is at most 2Ɛ; and (iv) in Join -Around,
if the inner cursor is restored, all the tuples in the range

Reference Points Table
AccBalLevels1(R1): 110 account balance values in the range of C_acctbal [0,11000]

SELECT * FROM CUSTOMER, AccBalLevels1
WHERE abs(C_acctbal - refpoint) <= Ɛ;

RegOps-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1
WHERE C_acctbal WITHIN Ɛ OF refpoint;SJ-EpsJoin

RegOps-EpsJoin

AccBalLevels2(R2): 11000 account balance values in the range of C_acctbal [0,11000]

SELECT T1.c_custkey, T1.C_acctbal, T2.refpoint FROM
 (SELECT c_custkey, C_acctbal, min(dist) as mindist
 FROM (SELECT c_custkey, C_acctbal, refpoint, abs(
 C_acctbal - refpoint) as dist FROM CUSTOMER,
 AccBalLevels1) AS C1 GROUP BY c_custkey, C_acctbal) AS
 T1, AccBalLevels1 T2
WHERE R1.mindist = abs(T1.C_acctbal - T2.refpoint);

SELECT c_custkey, C_acctbal, refpoint
FROM CUSTOMER, AccBalLevels1
WHERE C_acctbal AROUND refpoint;

SJ-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1 R1 ,
AccBalLevels2 R2 WHERE C_acctbal WITHIN 11 OF
R1.refpoint AND R1.refpoint WITHIN 11 OF R2.refpoint;

AssocRule

SELECT * FROM CUSTOMER, AccBalLevels2
WHERE C_acctbal WITHIN 11 OF refpoint AND
2200<C_acctbal AND C_acctbal<=6600

PushSel

SELECT refpoint, sum(C_acctbal)
FROM CUSTOMER, AccBalLevels[N] WHERE C_acctbal
WITHIN 11 OF refpoint GROUP BY refpoint

Lazy-Eager [N]

Queries

Fig. 15 Reference Points table and queries used in performance evaluation

 [marked tuple, previous inner tuple] share the same value of
the similarity join attribute.

VI. PERFORMANCE EVALUATION
We implemented the Ɛ-Join and Join-Around, as described

in Section V inside the PostgreSQL 8.2.4 query engine. In this
section we evaluate the performance of these operators as well
as the effectiveness of several transformation rules for SJs.

A. Test Configuration
The dataset used in the performance evaluation is based on

the one specified by the TPC-H benchmark [33]. The
Reference points tables and queries used in the tests are
presented in Fig. 15. The default dataset scale factor (SF) is 5
(5GB). All the experiments are performed on an Intel Dual
Core 1.83GHz machine with 2GB RAM running Linux as OS.

 Fig. 16 Performance of Join-Around Fig. 17 Performance of Ɛ-Join Fig. 18 Effectiveness of Associativity transformation

 Fig. 19 Effectiveness of pushing selection under SJ Fig. 20 Effectiveness of Lazy and Eager aggregation transformations

B. Performance Evaluation
We study the performance of the implemented operators

comparing their execution time and scalability properties with
the ones of queries that get similar results using only regular,
i.e., non-similarity-based, operators. Notice that even though
many implementation approaches have been proposed for SJs,
e.g., [8], [9], [10], [11], [12], most of them have been
proposed as standalone implementations not integrated within
a DBMS engine and make use of specialized indices, data
structures, partitioning, and access methods. The efficient
integration of these techniques within a DBMS query engine
and evaluation of their performance is a task for future work.

1) Join-Around Performance while Increasing Dataset Size:
Fig. 16 gives the execution time of the SJ-JoinAround query
compared to the one of the RegOps-JoinAround query that
produces the same output using only regular operators. This
figure compares the performance of both queries for different
values of scale factor (SF). The number of customers is
150,000*SF while the number of central points is maintained
constant. The execution time of RegOps-JoinAround grows
from being about 20 times bigger than that of SJ-JoinAround
for SF=1 to being about 200 times bigger for SF=8. The poor
performance of RegOps-JoinAround is due to a double nested
loop join in its execution plan in addition to the use of an
aggregation operation. The Join-Around operator sorts each
set once, and processes both sets synchronously.

2) Ɛ-Join Performance while Increasing Ɛ: Fig. 17 gives the
execution time of the SJ-EpsJoin query compared to the one
of the RegOps-EpsJoin query that produces the same output.
The results are presented for various values of Ɛ. The value of
Ɛ is a fraction of the domain range. Specifically, the customer
account balance domain uses values in the range [0,11000].

This experiment uses SF=1. The key result of this experiment
is that the SJ-EpsJoin query performs significantly better than
the RegOps-EpsJoin query for small values of Ɛ. For instance,
when Ɛ=1, the execution time of RegOps-EpsJoin is 4.32 sec.
while the one of SJ-EpsJoin is 0.96 sec., i.e., RegOps-EpsJoin
is over 4 times faster. The advantage of the Ɛ -Join over the
regular query gets reduced as the value of Ɛ increases and is
almost negligible when the size of Ɛ is about 20% of the
domain range. Having a good performance for small values of
Ɛ is of key importance for the Ɛ -Join operator since similarity
join queries with small Ɛ are among the most common and
useful types of similarity-based operations. The performance
of SJ-EpsJoin is better for small values of Ɛ because it
generates shorter restorations of the inner cursor. On the other
hand, RegOps-EpsJoin calculates the distance between all the
combinations of outer and inner tuples. This requires in
general the same amount of I/O independently of the value of
Ɛ. The additional cost for high values of Ɛ is due to the
increase in the number of links to be reported.

3) Effectiveness of Associativity transformation: AssocRule_
LHS and AssocRule_RHS in Fig. 18 represent the query
AssocRule executed using plans that corresponds to the LHS
and RHS of the rule IV.A.3.a respectively. The execution time
of AssocRule_RHS is 9.2% of that of AssocRule_LHS.
AssocRule_LHS joins (Ɛ-Join) first Customer (C) and R2
generating 17,241,601 intermediate rows. The execution time
of AssocRule_RHS is much smaller because it joins the two
smaller tables (R1 and R2) first generating only 2519
intermediate rows.

4) Effectiveness of pushing selection under SJ: PushSel_LHS,
PushSel_RHS1, and PushSel_RHS2 in Fig. 19 represent the
query PushSel executed using plans that corresponds to the
LHS and RHS of rule IV.A.1.a, and the RHS of rule IV.A.2.a

0
500

1000
1500
2000
2500
3000
3500

1 2 3 4 5 6 7 8

Ex
ec

ut
io

n
Ti

m
e

(s
)

Dataset Size (SF)

SJ-JoinAround

RegOps-JoinAround

0

10

20

30

40

50

0.01 0.1 1 5 10 20

Ex
ec

ut
io

n
Ti

m
e

(s
)

% of domain length used as Epsilon

SJ-EpsJoin

RegOps-EpsJoin

0
40
80

120
160
200

AssocRule_LHS AssocRule_RHS

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

40

80

120

160

PushSel_LHS PushSel_RHS1 PushSel_RHS2

Ex
ec

ut
io

n
Ti

m
e

(s
)

0

10

20

30

Lazy1 Eager1 Lazy2 Eager2

Ex
ec

ut
io

n
Ti

m
e

(s
)

C

S

R2

o

C

S

R2

o

C

S

R2

S

R1 R2

S

R1

S

C

C

S

R2

o o GB

S

C R1

GB

GB

S

C

R1

GB

S

C R2

GB

GB

S

C

R2

respectively. PushSel_LHS performs first the join (7,241,601
intermediate rows) and then the selection. In PushSel_RHS1
the selection operation has been pushed to the input
corresponding to table Customer (300,872 intermediate rows).
The execution time of PushSel_RHS1 is 73% of the one of
PushSel_LHS. In PushSel_RHS2 the filtering benefit is furher
improved by pushing selection operations on both inputs of
the join. The execution time of PushSel_RHS2 is only 55% of
the one of PushSel_LHS.

5) Effectiveness of Lazy and Eager aggregation
transformations: In Fig. 20, LazyN and EagerN represent the
query LazyEager executed using plans that corresponds to the
expressions E1 and E2 of Theorem 3 respectively. The
execution time of Eager1 is 35% of the one of Lazy1. The
advantage of the Eager approach increases when the
cardinality of the inner input grows as in Eager2 with an
execution time that is only 9% of that of Lazy2.

VII. CONCLUSIONS AND FUTURE WORK
This paper focuses on the study and implementation of the

Similarity Join (SJ) as a first-class database operator. Several
previously proposed types of similarity join are considered in
our study. In addition, a useful extension of the kNN-Join and
Ɛ-Join, named Join-Around is introduced. The paper studies
extensively the query operator properties of the Similarity Join.
It presents multiple equivalence rules that not only consider
direct extensions of known relational algebra rules but also
exploit specific properties of similarity joins to enable more
useful query transformations. The paper also studies the way
the Eager and Lazy Aggregation transformation techniques
can be applied to queries with JS and addresses the interaction
and equivalences of the previously proposed Similarity
Group-by (SGB) operators with the studied SJ operators. The
paper presents guidelines to implement Join-Around and Ɛ -
Join as core operators of a DBMS query engine and the
performance evaluation of this implementation in PostgreSQL.
The performance study shows that the SJ-based queries
perform significantly better than queries that get the same
result using only regular operators. Furthermore this section
shows the effectiveness of several studied transformation rules.

Plans for future work include the study and integration of
more complex similarity join strategies as database operators,
in particular approaches that support multi-dimensional data;
the extension of other operations, e,g., CUBE, ROLLUP,
union and selection, as similarity-aware operators and the
study of their interaction with SJ and SGB, the application of
SJ and SGB operators to the area of privacy preservation and
anonymity, and the study of similarity-based joins and
aggregations as tools in business decision support systems.

REFERENCES
[1] C. Böhm, “The Similarity Join: A powerful database primitive for high

performance data mining,” tutorial, in ICDE, 2001.
[2] C. Böhm and H. Kriegel, “A cost model and index architecture for the

similarity join,” in ICDE, 2001.
[3] C. Böhm, F. Krebs, and H. Kriegel, “Optimal Dimension Order: A

generic technique for the similarity join,” in International Conference
on Data Warehousing and Knowledge Discovery, 2002.

[4] G. Hjaltason and H. Samet, “Incremental distance join algorithms for
spatial databases,” in SIGMOD, 1998.

[5] C. Böhm and F. Krebs, “The k-Nearest Neighbour Join: Turbo
charging the KDD process,” Knowledge and Information Systems, 6(6):
728-749, 2004.

[6] C. Yu, B. Cui, S. Wang, and J. Su, “Efficient index-based KNN join
processing for high-dimensional data,” Information and Software
Technology, 49(4): 332-344, 2007.

[7] C. Xia, H. Lu, B. Chin, and O. Hu, “GORDER: An Efficient method
for KNN join processing,” in VLDB, 2004.

[8] V. Dohnal, C. Gennaro, and P. Zezula, “Similarity Join in Metric
Spaces Using eD-Index,” in DEXA, 2003.

[9] V. Dohnal, C. Gennaro, P. Savino, and P. Zezula, “Similarity Join in
Metric Spaces,” in ECIR, 2003.

[10] C. Böhm, B. Braunmüller, F. Krebs, and H.-P. Kriegel, “Epsilon Grid
Order: An Algorithm for the Similarity Join on Massive High-
Dimensional Data,” in SIGMOD, 2001.

[11] J.-P. Dittrich and B. Seeger, “GESS: a Scalable SimilarityJoin
Algorithm for Mining Large Data Sets in High Dimensional Spaces,”
in SIGKDD, 2001.

[12] E. H. Jacox and H. Samet, “Metric Space Similarity Joins,” ACM
Trans. Database Syst., 33(2):1-38, 2008.

[13] B. Bryan, F. Eberhardt, and C. Faloutsos, “Compact Similarity Joins,”
in ICDE, 2008.

[14] C. Xiao, W. Wang, and X. Lin, “EdJoin: An Efficient Algorithm for
Similarity Joins With Edit Distance Constraints,” in VLDB, 2008.

[15] C. Xiao, W. Wang, X. Lin, and J. X. Yu, “Efficient Similarity Joins for
Near Duplicate Detection,” in WWW, 2008.

[16] M. D. Lieberman, J. Sankaranarayanan, and H. Samet, “A Fast
Similarity Join Algorithm Using Graphics Processing Units,” in ICDE,
2008.

[17] S. Chaudhuri, V. Ganti, and R. Kaushik, “A Primitive Operator for
Similarity Joins in Data Cleaning,” in ICDE, 2006.

[18] S. Chaudhuri, V. Ganti, and R. Kaushik, “Data Debugger: An
Operator-Centric Approach for Data Quality Solutions,” Bulletin of the
IEEE Computer Society Technical Committee on Data Engineering,
2006.

[19] L. Gravano, P. G. Ipeirotis, H. V. Jagadish, N. Koudas, S.
Muthukrishnan, and D. Srivastava, “Approximate String Joins in a
Database (Almost) for Free,” in VLDB, 2001.

[20] M. Hadjieleftheriou, A. Chandel, N. Koudas, and D. Srivastava, “Fast
Indexes and Algorithms for Set Similarity Selection Queries,” in ICDE,
2008.

[21] X. Yang, B. Wang, and C. Li, “Cost-Based Variable-Length-Gram
Selection for String Collections to Support Approximate Queries
Efficiently,” in SIGMOD, 2008.

[22] X. Lian and L. Chen, “Similarity Search in Arbitrary Subspaces under
Lp-Norm,” in ICDE, 2008.

[23] M. Wichterich, I. Assent, P. Kranen, and T. Seidl, “Efficient EMD-
based Similarity Search in Multimedia Databases via Flexible
Dimensionality Reduction,” in SIGMOD, 2008.

[24] Y. N. Silva, W. G. Aref, and M. H. Ali, “Similarity Group-by,” in
ICDE, 2009.

[25] S. Adali, P. Bonatti, M. L. Sapino, and V. S. Subrahmanian, “A Multi-
Similarity Algebra,” in SIGMOD, 1998.

[26] C. Traina, A. J. M. Traina, M. R. Vieira, A. Arantes, and C. Faloutsos,
“Efficient processing of complex similarity queries in rdbms through
query rewriting,” in CIKM, 2006.

[27] M. C. N. Barioni, H. L. Razente, A. J. M. Traina, and C. Traina,
“SIREN: A similarity retrieval engine for complex data,” In VLDB,
2006.

[28] G. B. Baioco, A. J. M. Traina, and C. Traina, “Mamcost: Global and
local estimates leading to robust cost estimation of similarity queries,”
in SSDBM, 2007.

[29] M. R. P. Ferreira, C. Traina, and A. J. M. Traina, “An Efficient
Framework for Similarity Query Optimization,” in ACM GIS, 2007.

[30] W. Yan and P. Larson, “Eager Aggregation and Lazy Aggregation,” in
VLDB, 1995.

[31] P. Larson, “Data reduction by partial preaggregation,” in ICDE, 2002.
[32] D. J. DeWitt, J. F. Naughton, and D. A. Schneider, “An Evaluation of

Non-Equijoin Algorithms,” in VLDB, 1991.
[33] TPC-H Version 2.6.1. [Online]. Available: http://www.tpc.org/tpch.

