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Abstract— Similarity joins have been studied as key operations in 
multiple application domains, e.g., record linkage, data cleaning, 
multimedia and video applications, and phenomena detection on 
sensor networks. Multiple similarity join algorithms and 
implementation techniques have been proposed. They range 
from out-of-database approaches for only in-memory and 
external memory data to techniques that make use of standard 
database operators to answer similarity joins. Unfortunately, 
there has not been much study on the role and implementation of 
similarity joins as database physical operators. In this paper, we 
focus on the study of similarity joins as first-class database 
operators. We present the definition of several similarity join 
operators and study the way they interact among themselves, 
with other standard database operators, and with other 
previously proposed similarity-aware operators. In particular, 
we present multiple transformation rules that enable similarity 
query optimization through the generation of equivalent 
similarity query execution plans. We then describe an efficient 
implementation of two similarity join operators, Ɛ-Join and Join-
Around, as core DBMS operators. The performance evaluation 
of the implemented operators in PostgreSQL shows that they 
have good execution time and scalability properties. The 
execution time of Join-Around is less than 5% of the one of the 
equivalent query that uses only regular operators while Ɛ-Join’s 
execution time is 20 to 90% of the one of its equivalent regular 
operators based query for the useful case of small Ɛ (0.01% to 
10% of the domain range). We also show experimentally that the 
proposed transformation rules can generate plans with execution 
times that are only 10% to 70% of the ones of the initial query 
plans. 

I. INTRODUCTION 
The shift from systems that focus on exact semantics of 

data and queries to systems that focus on approximate and 
imprecise semantics is recognized as one of the main current 
paradigm transitions in data management systems. Different 
areas have made important contributions to this paradigm shift, 
among them: similarity-aware query processing in database 
systems, integration of information retrieval and database 
operations, and uncertain or probabilistic databases. The study 
of the similarity-aware counterparts of common database 
operations, i.e., selection, join, and grouping is a central goal 
of the work on similarity query processing. Similarity joins 
(SJ) are operations that combine two sets of data using 
similarity join predicates that match tuples with similar or 
approximate values. Similarity joins have been studied as key 
components to solve multiple problems, e.g., record linkage, 
data   cleaning,   phenomena   detection  on  sensor   networks, 
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Fig. 1  Comparison of similarity join implementation approaches  

marketing analysis, multimedia and video applications, etc. 
Multiple SJ algorithms and implementation techniques have 
been proposed. They range from out-of-database approaches 
for only in-memory or external memory data, to techniques 
that use standard database operators to answer SJs. However, 
there has not been much study on the role and implementation 
of similarity joins as database operators. Fig. 1 compares 
several approaches to implement Similarity Joins. The 
implementation of SJ as integrated database operators has the 
following key advantages: (i) SJ database operators can be 
interleaved with other regular and similarity-aware operators 
and their results pipelined for further processing; (ii) 
important optimization techniques, e.g., pushing certain 
filtering operators to lower levels of the execution plan, pre-
aggregation, and the use of materialized views can be 
extended to the new operators; and (iii) the implementation of 
these operators can reuse and extend other operators and 
structures to handle large datasets, and use the cost-based 
query optimizer machinery to enhance query execution time. 

This paper focuses on the study of similarity joins as first-
class database operators. Its main contributions are:  
• We study the similarity join as a first-class database 

operator, its interaction with other non-similarity and 
similarity-based operators, and its implementation as 
integrated component of the DBMS query processing and 
optimization engine. 

• We present the different types of similarity joins, 
introduce a new useful similarity join type, the Join-
Around, and propose SQL syntax to express similarity 
join predicates. 

• We analyze multiple transformation rules for the SJ 
operators. These rules enable query optimization through 
the generation of equivalent query execution plans. We 



study: (i) multiple core equivalence rules for SJ operators; 
(ii) the main theorem of Eager and Lazy aggregation for 
queries with similarity join and similarity group-by; (iii) 
the scenarios in which similarity predicates can be pushed 
from similarity join to similarity group-by; and (iv) 
equivalence rules between different SJ operators and 
between SJ and the similarity group-by operator. 

• We describe an efficient implementation of two SJ 
operators, the Epsilon-Join and Join-Around, as core 
DBMS operators. We consider the case of multiple SJ 
predicates and one-dimensional (1D) attributes.  

• We evaluate the performance and scalability properties of 
our implementation of the Epsilon-Join and Join-Around 
operators in PostgreSQL. The execution time of Join-
Around is less than 5% of the one of the equivalent query 
that uses only regular operators while Ɛ-Join’s execution 
time is 20 to 90% of the one of its equivalent regular 
operators based query for the useful case of small Ɛ    
(0.01% to 10% of the domain range). 

• We also evaluate experimentally the effectiveness of the 
proposed transformation rules and show they can generate 
plans with execution times that are only 10% to 70% of 
the ones of the initial query plans. 

The rest of this paper is organized as follows. Section II 
discusses the related work. Section III presents the different 
types of SJ and the proposed syntax to specify their similarity 
predicates. Section IV studies the equivalence rules among SJ 
and other regular and similarity-aware operators. Section V 
presents implementation guidelines based on a prototype 
realization of two SJ operators within PostgreSQL. Section VI 
reports the performance evaluation of the implemented 
operators and Section VII presents the conclusions and 
directions for future research. 

II. RELATED WORK 
Several types of similarity join, and corresponding 

implementation strategies, have been proposed in the literature, 
e.g., range distance join (retrieves all pairs whose distances 
are smaller than a pre-defined threshold) [1], [2], [3], [8], [9], 
[10], k-Distance join (retrieves the k most-similar pairs) [4], 
and kNN-join (retrieves, for each tuple in one table, the k 
nearest-neighbors in the other table) [5], [6], [7]. The range 
distance join, also known as the Ɛ-Join, has been the most 
studied type of similarity join. Among its most relevant 
implementation techniques, we find approaches that rely on 
the use of pre-built indices, e. g., eD-index [8] and D-index 
[9]. These techniques strive to partition the data while 
clustering together similar objects. However, this approach 
may require rebuilding the index to support queries with 
different similarity parameter values, i.e., epsilon. 
Furthermore, eD-index and D-index are directly applicable 
only to the case of self-joins. Several non-index-based 
techniques have also been proposed to implement the Ɛ-Join. 
EGO [10], GESS [11], and QuickJoin [12] are three of the 
most relevant non-index-based algorithms. The Epsilon Grid 
Order (EGO) algorithm [10] imposes an epsilon-sized grid 
over the space and uses an efficient schedule of reads of 

blocks to minimize I/O. The Generic External Space Sweep 
(GESS) algorithm [11] creates hypersquares centered on each 
data point with epsilon length sides, and joins these 
hypersquares using a spatial join on rectangles. The Quickjoin 
algorithm [12] recursively partitions the data until the subsets 
are small enough to be efficiently processed using a nested 
loop join. The algorithm makes recursive calls to process each 
partition and a separate recursive call to process the “windows” 
around the partition boundary. Quickjoin has been shown to 
perform better than EGO and GESS [12]. 

Also, of importance is the work on similarity join 
techniques that make use of relational database technology 
[17], [18], [19]. These techniques are applicable only to string 
or set-based data. The general approach pre-processes the data 
and query, e.g., decomposes data and query strings into sets of 
q-grams, and stores the results of this stage on separate 
relational tables. Then, the result of the similarity join can be 
obtained using standard aggregate/group-by/join SQL 
statements. Indices on the pre-processed data are used to 
improve performance. A key difference of this work with our 
contributions in this paper is that we focus on studying the 
properties, optimization techniques, e.g., pre-aggregation and 
query transformation rules, and implementation techniques of 
several types of similarity joins as database operators 
themselves rather than studying the way a SJ can be answered 
using standard operators. In fact, several of the discussed 
properties for epsilon-join in this paper are also applicable to 
the operators proposed in [17] and [18]. Moreover, the 
implementation section of our work focuses on SJ on 
numerical data rather than string data. 

A related type of join is the band join introduced in [32]. 
The join predicate of this join type has the form S.s-Ɛ1≤R.r≤ 
S.s+Ɛ2. A key difference of our work with the work on band 
joins is that band joins represent only a special case of one of 
the four types of joins considered in our study. Specifically, a 
band join where Ɛ1=Ɛ2 is a special case of Ɛ-Join for the case 
of 1D data. We propose transformation rules and properties 
for similarity joins that apply in general to multi-dimensional 
data. Moreover, a key goal of our implementation is to take 
advantage of the mechanisms and data structures already 
available in most DBMS’ engines to facilitate the integration 
of similarity joins into real world DBMSs. The 
implementation of band joins in [32] makes use of specialized 
sampling, partitioning, and page replacement mechanisms.  

Some recent work in the area of similarity joins has focused 
on: proposing a compact way to represent the output of an 
epsilon join [11], i.e., reporting groups of nearby points 
instead of every join link; efficient algorithms for in-memory 
similarity join with edit distance constraints [14]; algorithms 
for near duplicate detection that exploit the ordering of tokens 
in a record to reduce the number of required distance 
computations [15]; and similarity join algorithms that exploit 
sorting and searching capabilities of GPUs [16].  

The extension of other standard operations to their 
similarity-based counterparts, e. g., similarity selection [20], 
[21], [22], [23], and similarity grouping [24], has been studied 
previously. Among the important recent contributions in this 



area are: the study of fast indices and algorithms for set 
similarity selection using semantic properties that allow 
pruning large percentages of the search space [20], a 
quantitative cost-based approach to build high-quality grams 
to support selection queries on strings [21], a method that 
finds all data objects that match with a given query object in a 
low-dimensional subspace instead of the original full space 
[22], and flexible dimensionality reduction techniques to 
support similarity search using the Earth Mover’s Distance 
[23]. Of special interest is the work on Similarity Group-by 
(SGB) presented in [24]. SGB is an extension of the group-by 
database operator that supports the formation of groups of 
similar objects. Three SGB instances are introduced, i.e., 
group-around, unsupervised group-by, and group-by with 
delimiters; and are shown to have good execution time and 
scalability properties with at most only 25% increase in 
execution time over the regular group-by [24]. We study the 
interaction and equivalences between SJ and SGB. 
Furthermore, we discuss scenarios in which the similarity 
predicate of SJ can be pushed partially or totally to SGB.    

The work in [25] proposes an algebra for similarity-based 
queries. This work presents the extension of simple algebra 
rules, e.g., pushing selection into join, to the case of similarity 
operators. The work in [26] proposes an extension to the 
relational algebra to support similarity queries with several 
similarity predicates combined using the Boolean operators 
and, or, and not. However, [26] does not consider similarity 
joins or queries that combine non-similarity and similarity 
predicates. [27] proposes an extended SQL syntax to express 
queries that use both non-similarity and similarity predicates. 
The work in [28] presents a cost model to estimate the number 
of I/O accesses and distance calculations to answer similarity 
queries over data indexed using metric access methods. Both 
[27] and [28] only consider range distance and knn-joins. A 
framework for similarity query optimization is presented in 
[29]. This work makes use of simple equivalence rules to 
generate multiple alternative query plans. The main difference 
between [25], [26], [27] and our work is that we focus on 
analyzing in detail the properties and equivalence rules that 
involve the different kinds of similarity join. Our study 
considers four types of SJ, the equivalences among them and 
with the similarity group-by operator. Furthermore, we study 
extensions of the important Lazy and Eager aggregation 
transformations to the case of similarity join queries. 

Some of the optimization techniques of SJ presented in this 
paper build on previous work on optimization of regular non 
similarity queries. Larson et al. study pull-up and push-down 
techniques that allow the query optimizer to move aggregation 
operators up and down the query plan [30], [31]. These 
techniques enable complete [30] or partial [31] pre-
aggregation that can reduce significantly the input size of a 
join and decrease the execution time of an aggregation query.  

III. SIMILARITY JOIN OPERATORS 
The generic definition of the Similarity Join (SJ) operator is 

as follows: 
𝐴𝐴 ⋈𝜃𝜃𝑆𝑆 𝐵𝐵 = {〈𝑎𝑎, 𝑏𝑏〉 | 𝜃𝜃𝑆𝑆(𝑎𝑎, 𝑏𝑏), 𝑎𝑎 ∈ 𝐴𝐴, 𝑏𝑏 ∈ 𝐵𝐵} 

ε-Join:  SELECT … FROM A, B
 WHERE A.a WITHIN ε OF B.b

Around-Join: SELECT … FROM A, B
      WHERE A.a AROUND B.b [MAX_DIAMETER 2r]
kNN-Join:  SELECT ... FROM A, B
      WHERE B.b k NEAREST_NEIGHBOR_OF A.a
kD-Join:  SELECT ... FROM A, B
      WHERE A.a k TOP_CLOSEST_PAIRS B.b  

Fig. 2 Extended SQL syntax for similarity join predicates  
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Fig. 3 Types of Similarity Join  

where θs represents the similarity join predicate. This 
predicate specifies the similarity-based conditions that the 
pairs <a,b> need to satisfy to be in the similarity join output. 
The similarity join predicates for the similarity join operators 
considered in our study are as follows.  
• Range Distance Join (Ɛ-Join): 

          𝜃𝜃𝜀𝜀 ≡ 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝜀𝜀 
• kNN-Join: 

         𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 ≡ 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑎𝑎 𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑎𝑎 
• k-Distance-Join (kD-Join): 

𝜃𝜃𝑘𝑘𝑘𝑘 ≡ 〈𝑎𝑎, 𝑏𝑏〉 𝑖𝑖𝑖𝑖 𝑜𝑜𝑜𝑜𝑜𝑜 𝑜𝑜𝑜𝑜 𝑡𝑡ℎ𝑒𝑒 𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜 𝑘𝑘 − 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 
• Join-Around (A-Join):  

         𝜃𝜃𝐴𝐴,𝑀𝑀𝑀𝑀=2𝑟𝑟 ≡ 𝑏𝑏 𝑖𝑖𝑖𝑖 𝑡𝑡ℎ𝑒𝑒 𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐𝑐 𝑛𝑛𝑛𝑛𝑛𝑛𝑛𝑛ℎ𝑏𝑏𝑏𝑏𝑏𝑏 𝑜𝑜𝑜𝑜 𝑎𝑎 𝑎𝑎𝑎𝑎𝑎𝑎  
                  𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑎𝑎, 𝑏𝑏) ≤ 𝑟𝑟 

The range distance, kNN, and k-Distance join operators are 
common and extensively used types of similarity join. The 
Join-Around is a new useful type of similarity join that 
combines some properties of both the range distance and kNN 
joins. Every value of the first joined set is assigned to its 
closest value in the second set. Additionally, only the pairs 
separated by a distance of at most r are part of the join output. 
MD stands for Maximum Diameter and r=MD/2 represents 
the Maximum Radius.  As presented in Section IV, the Join-
Around operator with MD=∞ is equivalent to the kNN-Join 
for k=1. Some queries that show the usefulness of this new 
type of similarity join are presented later in this section. 

Fig. 2 shows an extension of SQL syntax to express the 
different types of similarity join predicates. Fig. 3 shows 
examples of the four types of similarity join operators when 
they are applied to two numerical datasets. 

Similarity joins are core operations in multiple application 
domains, e.g., data cleaning, pattern recognition, 
bioinformatics, multimedia, phenomena detection on sensor 
networks, marketing analysis, etc. Many of these scenarios, 
e.g., pattern recognition and bioinformatics, inherently need 
the support of similarity joins on multidimensional data.  
However, there are also many application scenarios, e.g., 
marketing analysis and phenomena detection on sensor 



networks, that can greatly benefit from the use of similarity 
joins on one dimensional data. Fig. 4 gives four similarity 
queries that use similarity joins to answer business-oriented 
questions in a decision support system. The presented 
similarity queries are extensions of several non-similarity-
based TPC-H queries [33]. The similarity queries in Fig. 4 
illustrate that the use of similarity joins allows answering 
more complex and interesting business questions.   

IV. OPTIMIZING SIMILARITY JOINS 
This section presents the study of similarity join properties 

and techniques that enable the optimization of similarity join 
queries through the generation of alternative execution plans. 
This section introduces: (i) core equivalence rules that exploit 
specific properties of SJs, (ii) equivalence rules between 
multiple SJ operators and between SJ and similarity group-by 
(SGB) operators, and (iii) the study of Eager and Lazy 
transformation techniques that exploit pre-aggregation using 
group-by and similarity group-by to significantly reduce the 
amount of data to be processed by SJs. 

A. Core Equivalence Rules 
This section presents multiple equivalence rules that 

involve the different SJ operators. This section not only 
considers the extension of common equivalence rules to the 
case of similarity joins, but particularly also studies scenarios 
that exploit certain specific properties of SJs to enable more 
effective query transformations. The rules in this section and 
in section IV.B use the notation presented in Fig. 5. The 
examples assume the following relations’ content: 
E1=E2=E3={1,2,...,100}, and E4={21,22,...,25}. 

1)  Basic Distribution of Selection over SJ: The regular 
selection operation distributes over the similarity join 
operations according to the following rules. 

When all the attributes of the selection predicate θ involve 
only the attributes of one of the expressions being joined (E1): 
a.  𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2 

b. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 𝐸𝐸2 

c. 𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝐴𝐴 𝐸𝐸2  

When the selection predicates θ1 and θ2 involve only the 
attributes of E1, and E2, respectively: 
d. 𝜎𝜎𝜃𝜃1∧𝜃𝜃2�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃1(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 (𝜎𝜎𝜃𝜃2(𝐸𝐸2)) 

Usage: In the RHS of these rules, the selection operator is 
pushed under the SJ operators to reduce the number of tuples 
to be processed by the join. The transformation from the LHS 
expression to the RHS one can generate low cost plans 
because in general SJ operators are expected to be more costly 
than selection filters. Fig. 6.a presents an example of rule 1.a. 
The numbers next to the arrows represent the number of 
flowing tuples in the query pipeline. The SJ operator of the 
LHS expression processes a total of 200 tuples while the one 
of the RHS expression only processes a total of 105 tuples.  

2)  Pushing Selection Predicate under Originally Unrelated 
Join Operand:  In the  equivalence rules  presented in  Section  

Business Question: Study how well the order priority system works around 
dates of interest (holydays, marketing campaigns, etc.)

Select d_refdate, o_orderpriority, count(*) as order_count from orders, DatesOfInterest
Where o_orderdate AROUND d_refdate 
           and exists (Select * from lineitem

    Where l_orderkey = o_orderkey and l_commitdate < l_receiptdate)
group by o_orderpriority, d_refdate order by o_orderpriority, d_refdate

Original TPC-H Query
Q4 – Business Question: Study how well the order priority system is 

working in a given quarter
Similarity-aware Query

Business Question: Study the revenue volume done between local 
(nearby) suppliers and customers (Revenue of “short distance”orders)

Select n_name, sum(l_extendedprice * (1 - l_discount)) as revenue
From customer, orders, lineitem, supplier, nationSupp NS, nationCust NC, region
Where c_custkey = o_custkey and l_orderkey = o_orderkey
         and l_suppkey = s_suppkey and c_location WITHIN Ɛ TO s_location            
         and c_nationkey = NC.n_nationkey and s_nationkey = NS.n_nationkey
         and NC.n_regionkey = NS.n_regionkey and NC.n_regionkey = r_regionkey
         and r_name = '[REGION]' and o_orderdate >= date '[DATE]'
         and o_orderdate<date '[DATE]'+interval '1' year
group by n_name order by revenue desc

Original TPC-H Query
Q5 – Business Question: Study the revenue volume done between 

suppliers and customers of the same country
Similarity-aware Query

Business Question: Forecast revenue change that would have resulted 
from eliminating certain discounts on certain date ranges of interest 

(holydays, marketing campaigns, etc.)
Select d_refdate, sum(l_extendedprice*l_discount) as revenue
From lineitem, DatesOfInterest
Where l_shipdate AROUND d_refdate MAX_SIZE 'D' day
           and l_discount between [DISCOUNT] - 0.01 and [DISCOUNT] + 0.01
           and l_quantity < [QUANTITY]
Group by d_refdate;

Original TPC-H Query
Q6 – Business Question: Forecast revenue change that would have 

resulted from eliminating certain discounts in a given year
Similarity-aware Query

Business Question: Classify customers based on their buying power
Select c_name, c_custkey, r_refRevlevel
From (Select c_name, c_custkey, sum(l_extendedprice) as TotalBuy
           From customer, orders, lineitem
           Where o_orderkey in (Select l_orderkey From lineitem
                                          Group by l_orderkey Having sum(l_quantity) > [QUANTITY])
           and c_custkey = o_custkey and o_orderkey = l_orderkey
           Group by c_name, c_custkey), RevenueLevelsOfInterest 
Where TotalBuy AROUND r_refRevlevel Order by r_refRevlevel

Original TPC-H Query
Q18 – Business Question: Find large volume(quantity) customers. Large 

volume orders are the ones with a total quantity greater than a given level.
Similarity-aware Query

Similarity Query Example 1

Similarity Query Example 2

Similarity Query Example 3

Similarity Query Example 4

 

Fig. 4 Examples of the use of Similarity Join 

Ei a relation
ei an attribute of Ei

σ and the selection and join operators respectively
θ a non similarity predicate

θƐ, θkNN, θkD, θA the different similarity join predicates as defined in section III

GAγF(AA)(R)

the aggregation operator
is the relation being aggregatedR 
 the aggregation attributesAA
 the aggregation functionsF
the grouping attributes. It can be a simple attribute in the 
case of regular grouping, or an expression like E1.e1 
around E2.e2 in the case of Similarity Group Around 
(SGB-A), a type of similarity grouping that groups the 
tuples of E1 around a set of central points (tuples of E2) 
assigning every tuple of E1 to the group of the central 
point with the minimum dist (E1.e1, E2.e2) [24]

GA

 
Fig. 5 Notation for equivalence rules 

IV.A.1, each selection predicate θ is pushed only under the 
join operand that contains all the attributes referenced in θ. In 
the case of the Ɛ-Join operator, the filtering benefits of 
pushing a selection predicate θ can be further improved by 



pushing θ under both operands of the join as shown in the 
following equivalence rule. 

a.   𝜎𝜎𝜃𝜃�𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2� ≡ (𝜎𝜎𝜃𝜃(𝐸𝐸1)) ⋈𝜃𝜃𝜀𝜀 (𝜎𝜎𝜃𝜃±𝜀𝜀(𝐸𝐸2)) 
where all the attributes of the selection predicate θ involve 
only the attributes of E1, and the selection predicate θ±Ɛ 
represents a modified version of θ where each condition is 
“extended” by Ɛ and is applied on the join attribute of E2. For 
example, if θ = 10 ≤ e1 ≤ 20, then θ±Ɛ = 10–Ɛ ≤ e2 ≤ 20+Ɛ.  
Usage: The single selection operator of the LHS expression is 
used to filter both inputs of the join in the RHS expression. 
The transformation from the LHS expression to the RHS one 
can generate a plan with even lower cost than the one 
generated applying rule 1.a. Fig. 6.b presents an example 
where the SJ operator of the LHS expression processes a total 
of 200 tuples while the one of the RHS expression only 
processes a total of 20 tuples. 

3)  Basic Associativity of SJ Operators: Similarity Join 
operators are associative using the following rules.  

Rules with the same type of similarity join: 
a. �𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1 𝐸𝐸2� ⋈𝜃𝜃𝜀𝜀2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝜀𝜀2 𝐸𝐸3)  
b. �𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1 𝐸𝐸2� ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)  
c. �𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1 𝐸𝐸2� ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2 𝐸𝐸3) 

Rules that combine different types of similarity and regular 
join: 
d. �𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1 𝐸𝐸2� ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2 𝐸𝐸3)  
e. �𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1 𝐸𝐸2� ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)  
f. �𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1 𝐸𝐸2� ⋈𝜃𝜃2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃2 𝐸𝐸3)  
g. (𝐸𝐸1 ⋈𝜃𝜃1 𝐸𝐸2) ⋈𝜃𝜃𝐴𝐴2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝐴𝐴2 𝐸𝐸3)  
h. (𝐸𝐸1 ⋈𝜃𝜃1 𝐸𝐸2) ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2∧𝜃𝜃 𝐸𝐸3 ≡ 𝐸𝐸1 ⋈𝜃𝜃1∧𝜃𝜃 (𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 2 𝐸𝐸3)  

where θ1, θƐ1, θA1, and θkNN1 involve attributes from only E1 
and E2; θ2, θƐ2, θA2, and θkNN2 involve attributes from only E2 
and E3.  
Usage: Given an expression with several SJ operations, the 
plan cost depends on how many tuples need to be processed 
by each SJ operator and the processing cost of each specific 
type of SJ. Thus, the cost depends on which SJ operation is 
computed first. This will determine the number of flowing 
tuples to be processed by the remaining SJ operators. Fig. 6.c 
presents an example of rule 3.a. The LHS expression 
computes first the less selective SJ and processes a total of 
1158 tuples in the second one. The RHS expression computes 
first the most selective SJ and processes only 200 tuples in the 
second one. The optimizer will probably select the RHS plan.  

4)  Associativity Rule that Enables Join on Originally 
Unrelated Attributes: In the equivalence rules presented in 
Section IV.A.3, each join predicates involves the same 
attributes in both sides of the rule. In the case of Ɛ-Join, when 
the attributes e1 of E1 and e2 of E2 are joined using Ɛ1 and the 
result joined with attribute e3 of E3 using Ɛ2, there is an 
implicit relationship between e1 and e3 that is exploited by the 
following equivalence rule.   
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Fig. 6 Extended SQL syntax for Similarity Join predicates 

a. �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1 𝑒𝑒2 𝐸𝐸2� ⋈𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3 𝐸𝐸3 ≡ 
     �𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝜀𝜀1+𝜀𝜀2 𝑒𝑒3 𝐸𝐸3� ⋈(𝑒𝑒1  𝜃𝜃𝜀𝜀1 𝑒𝑒2)∧(𝑒𝑒2 𝜃𝜃𝜀𝜀2 𝑒𝑒3) 𝐸𝐸2 

Notice that this rule is expressed using an extended notation 
that specifies explicitly the attributes being joined.  
Usage: The RHS expression of this rule produces a bottom 
join that joins attributes that are not joined in the LHS 
expression. The transformation from the LHS expression to 
the RHS one has the potential to generate a lower cost plan 
when the RHS’ bottom join outputs a low number of tuples. 
Fig. 6.d presents an example of rule 4.a. The LHS expression 
processes a total of 200 tuples in the first SJ and 1063 tuples 
in the second one. The LHS expression processes 105 tuples 
in the first SJ and 155 tuples in the second one. Notice that the 
top RHS’ SJ has a slightly more complex SJ predicate.  

5)  Commutativity of SJ Operators: Some similarity Join 
operations are commutative: 
a. 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2 ≡ 𝐸𝐸2 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸1                                                     
b. 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘 𝐸𝐸2 ≡ 𝐸𝐸2 ⋈𝜃𝜃𝑘𝑘𝑘𝑘 𝐸𝐸1                                                

kNN-Join and Join-Around operators are not commutative. 
Usage: Similarly to the case of regular join, the cost of a given 
implementation of a SJ operator can be different when 
considering the larger relation to be joined as the inner or 
outer input of the operator. This rule is used to consider both 
cases during cost-based optimization.  

Additionally, other rules like the distribution of projection 
over SJ and the combination of selection predicates with SJ 
predicates apply to the case of SJs in a similar way they do to 
the case of non-similarity joins. 

B. Equivalence Among Similarity Operators 
The Join-Around and the Similarity Group Around (SGB-A) 

operators are equivalent in the following way: 



a. 𝛾𝛾𝐹𝐹(𝐴𝐴𝐴𝐴)(𝐸𝐸1)𝑒𝑒1 𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎  𝐸𝐸2.𝑒𝑒2 ≡ 𝛾𝛾𝐹𝐹(𝐴𝐴𝐴𝐴)(𝐸𝐸1 ⋈𝑒𝑒1 𝜃𝜃𝐴𝐴  𝑒𝑒2 𝐸𝐸2)𝑒𝑒2  
i.e., a SGB-A operation can be transformed into a regular 
Group-by applied to the result of a Join-Around operation. 
Usage: This rule can be used to support a similarity grouping 
operation using the implementation of the Join-Around. 

The following rules describe the special cases in which 
different similarity join operators are equivalent.   
b. 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴,𝑀𝑀𝑀𝑀 =∞ 𝐸𝐸2 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘𝑘𝑘 (𝑘𝑘=1) 𝐸𝐸2 
c. 𝐸𝐸1 ⋈𝜃𝜃𝐴𝐴,𝑀𝑀𝑀𝑀 =2𝜀𝜀 𝐸𝐸2 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2,  

if the joins operate on one-dimensional data and 2Ɛ < 
minimum distance of consecutive points in E2 , i.e., there 
is no overlap in the MD ranges. 

d. 𝐸𝐸1 ⋈𝜃𝜃𝑘𝑘𝑘𝑘 𝐸𝐸2 ≡ 𝐸𝐸1 ⋈𝜃𝜃𝜀𝜀 𝐸𝐸2,  
if Ɛ = distance of the k-th (longest) link in LHS. 

C. Eager and Lazy Transformations with SJ and SGB 
An important query optimization approach is the use of 

pull-up and push-down techniques to move the grouping 
operator up and down the query tree. The main Eager and 
Lazy aggregations theorem introduced in [30] enables several 
pull-up and push-down techniques for the regular, i.e., non-
similarity, join and group-by operators. This theorem allows 
the pre-aggregation of data before the join operator to reduce 
its input size. The main theorem is extended in [24] to the case 
of regular join and similarity group-by (SGB). This subsection 
presents the extension of the main theorem to the case of 
similarity join and (regular or similarity) group-by. 
Furthermore, we study scenarios in which the similarity 
predicate of SJ operators can be pushed totally or partially to 
the grouping operator.  
General usage: Figures 8, 9, 10, and 11 illustrate several 
cases of the eager and lazy transformations that will be studied 
in detail later in this section. In general, the single aggregation 
operator of the Lazy approach is split into two parts in the 
Eager approach. The first part pre-evaluates some aggregation 
functions and calculates the count before the join. The second 
part uses the intermediate information to calculate the final 
results after the join. Both the eager and lazy versions of a 
query should be considered during query optimization since 
neither of them is the best approach in all scenarios. Joins with 
high selectivity tend to benefit the Lazy approach while 
aggregations that reduce considerably the number of tuples 
that flow in the pipeline tend to benefit the Eager approach.  

The presentation of the theorems and proofs in this section 
use the notation presented in Fig. 7. This notation is used 
because: (i) it allows a direct comparison with analogous 
theorems for regular operators [30] and for similarity grouping 
[24] that use a similar notation, and (ii) it uses a convenient 
representation of operators’ arguments that facilitates the 
presentation of the theorems and proofs. The Eager and Lazy 
aggregation theorems for the case of (i) regular join and 
group-by [30], and (ii) regular join and similarity group-by 
[24] are presented next. These theorems are referenced in the 
new extensions of the theorem studied later in this section. 
Theorem 1 Eager/Lazy Aggregation Main Theorem for 
Group-by and Join: The following two expressions 

g[GA]R regular grouping of relation R on grouping attributes GA

g[GA; Seg]R
similarity grouping of relation R on grouping attributes GA 
using segmentations Seg. The domain of the nth element of GA 
is partitioned by the nth element of Seg

F[AA]R aggregation operation of a previously grouped table R
F and AA sets of aggregation functions and columns, respectively

σ, πD, πA, UA       
and 

selection, projection with and without duplicate elimination, set 
union without duplicate elimination, theta-join, and similarity 
join respectively

Rd a table that always contains aggregation attributes
Ru a table that may or may not contain aggregation attributes

GAd and GAu  the grouping columns of Rd and Ru, respectively
AA all the aggregation columns

AAd and AAu the subsets of AA that belong to Rd and  Ru, respectively
Cd and Cu the conjunctive predicates on columns of Rd and Ru, respectively

C0 the conjunctive predicates involving columns in both Ru and Rd
α(C0) the columns involved in C0
GAd

+ = GAd U α(C0)-Rd, columns that participate in join and grouping
F the set of all aggregation functions

Fd and Fu the members of F applied on AAd and AAu, respectively

FAA the resulting columns of the application of F on AA in the first 
grouping operation of the eager strategy

Seg the set of segmentation of the attributes in GA
Segd and Segu the subsets of Seg for the attributes in GAd and GAu, respectively

NGAd a set of columns in Rd

CNT the column with the result of Count(*) in the first aggregation 
operation of the eager approach

FAAd
the set of columns, other than CNT, produced in the first 
aggregation operation of the eager approach

Fua
the duplicated aggregation function of Fu, e.g., if Fu=(SUM, 
MAX), then Fua=(SUM, MAX, count) = (SUM*count, MAX)  

Fig. 7 Algebraic notation for Eager and Lazy transformation theorems  

 E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 
       g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈𝐶𝐶0 Ru) 
  E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 
       πA[GAd, GAu, AAu, FAAd, CNT] 
      g [GAd, GAu]σ[Cu] 
       (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd] 
       g [NGAd]σ[Cd]Rd) ⋈𝐶𝐶0 Ru) 

are equivalent if (1) Fd can be decomposed into Fd1 and Fd2, (2) 
Fu contains only class C or D aggregation functions [30], (3) 
NGAd → GAd

+ holds in σ[Cd]Rd, and (4) α(C0) ∩ GAd = Ø. 
Expression E1 represents the Lazy approach while 

expression E2 represents the Eager approach. 
Theorem 2 Eager/Lazy Aggregation Main Theorem for 
Similarity Group-by and Join: The following expressions 

  E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 
       g [GAd, GAu; Seg]σ[Cd ^ Cu] (Rd ⋈𝐶𝐶0 Ru) 
  E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 
       πA[GAd, GAu, AAu, FAAd, CNT] 
      g [GAd, GAu; Segu]σ[Cu] 
       (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd] 
       g [NGAd; Segd]σ[Cd]Rd) ⋈𝐶𝐶0 Ru) 

are equivalent under the same conditions as Theorem 1.  

1)  Eager and Lazy Transformations with GB and SJ: The 
Eager and Lazy aggregation transformations can be extended 
to the case of similarity joins as shown in Theorem 3.  
Theorem 3 Eager/Lazy Aggregation Main Theorem for 
Group-by and Similarity Join: The following expressions 

E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 
       g [GAd, GAu]σ[Cd ^ Cu] (Rd ⋈�𝐶𝐶0 Ru) 
E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 



       πA[GAd, GAu, AAu, FAAd, CNT] 
      g [GAd, GAu]σ[Cu]  
      (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]  
      g [NGAd]σ[Cd]Rd) ⋈�𝐶𝐶0 Ru) 

where ⋈�C0  is kNN-Join, Ɛ -Join, or A-Join; are equivalent 
under the same conditions as Theorem 1.  
Usage: Fig. 8 illustrates an example of the application of this 
theorem. The SJ of the Lazy aggregation expression processes 
a total of 7 tuples while the grouping node processes 5 tuples. 
In the Eager aggregation expression all the tuples of T1 get 
combined into one tuple in the bottom grouping node and the 
SJ and top grouping operators only need to process 3 and 1 
tuples respectively. In scenarios where T1 has a significant 
number of tuples with the same value of (G1, J1) the 
optimizer will probably favor the Eager approach; otherwise 
the Lazy approach will probably be selected.  
Proof sketch: The validity of this theorem relies on the 
following properties. 
Given Rd' and Ru' instances of Rd and Ru respectively, the 
result of (Rd' ⋈�𝐶𝐶0 Ru') is equivalent to the result of (Rd' ⋈𝜃𝜃  Ru') 
where θ = disjunction of (Rd.C0d=x ^ Ru.C0u=y) for every 
different link (x,y) of the result of (Rd'  ⋈�𝐶𝐶0 Ru').                  (1)  
θ, as defined in (1), remains unchanged and valid when Rd' is 
augmented with tuples that have already present values of 
Rd'.C0d, i.e., duplicates, or when such tuples are removed from 
Rd'.                                                                                          (2) 

The validity of Theorem 3 can be shown by following these 
steps:  

For every Rd’ and Ru’ instances of Rd and Ru, respectively,  
1.   E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu]  

       g [GAd, GAu]σ[Cd ^ Cu] (Rd’  ⋈�𝐶𝐶0 Ru’) 
 is equivalent to  

     E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 
            g [GAd, GAu]σ[Cd ^ Cu] (Rd’  ⋈𝜃𝜃  Ru’), 
     where θ is defined as in (1). 
2.   E1’: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 
             g [GAd, GAu]σ[Cd ^ Cu] (Rd’ ⋈𝜃𝜃  Ru’) 
      is equivalent to  

 E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 
        πA[GAd, GAu, AAu, FAAd, CNT] 
        g [GAd, GAu]σ[Cu]  
        (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd] 
        g [NGAd]σ[Cd]Rd’) ⋈𝜃𝜃  Ru’) 

      because of Theorem 1. 
3.  E2’: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

       πA[GAd, GAu, AAu, FAAd, CNT] 
       g [GAd, GAu]σ[Cu]  
       (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]  
       g [NGAd]σ[Cd]Rd’) ⋈𝜃𝜃  Ru’) 

     is equivalent to 
     E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 

      πA[GAd, GAu, AAu, FAAd, CNT] 
      g [GAd, GAu]σ[Cu]  
      (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd]  
      g [NGAd]σ[Cd]Rd’) ⋈�𝐶𝐶0 Ru’) 
since the grouping operation before the join merges only 
tuples that share the same value of Rd’.C0d, and (2). 
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Fig. 8 Eager/Lazy transformation with GB and SJ 
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Fig. 9 Eager/Lazy transformation with SGB and SJ 

2)  Eager and Lazy Transformations with SGB and SJ: The 
Eager and Lazy Aggregation transformations can be extended 
to the case of similarity join and similarity group-by as shown 
in Theorem 4.  
Theorem 4 Eager/Lazy Aggregation Main Theorem for 
Similarity Group-by and Similarity Join: The following 
two expressions 

  E1: F[AAd, AAu]πA[GAd, GAu, AAd, AAu] 
       g [GAd, GAu; Seg]σ[Cd ^ C0 ^ Cu] (Rd  ⋈�𝐶𝐶0 Ru) 
  E2: πD[GAd, GAu, FAA](Fua[AAu,CNT], Fd2[FAAd]) 
       πA[GAd, GAu, AAu, FAAd, CNT] 
      g [GAd, GAu; Segu]σ[C0 ^ Cu] 
       (((Fd1[AAd], COUNT)πA[NGAd, GAd

+, AAd] 
       g [NGAd; Segd]σ[Cd]Rd) ⋈�𝐶𝐶0 Ru) 

where ⋈�𝐶𝐶0  is kNN-Join, Ɛ-Join, or A-Join; are equivalent 
under the same conditions as Theorem 1.  
Usage: An example of the use of this theorem is presented in 
Fig. 9. The number of tuples flowing in the pipelines is similar 
to the one of the previous example. The bottom grouping node 
of the Eager approach merges tuples that have: (i) the same 
value of J1 and (ii) values of G2 that belong to the same 
similarity group. In the example all the tuples of T1 are 
merged even though they have different values of G1.  
Proof sketch: The validity of this theorem relies on the 
validity of theorems 2 and 3. 

3)  Pushing Similarity Predicate from Ɛ-Join to GB: This 
subsection and the following one explore ways to further 
enhance the filtering power of the pre-aggregation step of the 
Eager approach pushing down the similarity predicates from 
the SJ operator to the grouping one. The equivalences 



described in these subsections are enhancements over the one 
presented in Section IV.C.1. 

The similarity predicate of the Ɛ-Join can be (partially) 
pushed down to a grouping operator as shown in Fig. 10. The 
bottom aggregation of the Eager approach performs regular 
aggregation on G1 and similarity aggregation SGB-A' on J1 
around J2 with MAX_GROUP_DIAMETER = 2Ɛ. SGB-A' is a 
variation of similarity group around (SGB-A) [24] that only 
merges tuples that are linked to only one central point (J2) by 
the Ɛ-Join. The value of J1 in a resulting tuple of SGB-A' can 
be the value of the central point, i.e., J2, or any of the values 
of J1 of the grouped tuples. In both cases, the Ɛ -Join of the 
Eager approach will generate the correct join links. SGB-A' 
generates at most one group per different value of J2, i.e., 
tuples with the same value of J2 in T2 are treated as a single 
central point. The goal of pushing the similarity predicate 
from SJ to the aggregation operator is to increase the number 
of pre-aggregated tuples while maintaining a grouping 
operator that can be executed quickly. SGB-A has been shown 
to have an execution time not higher than 25% of that of the 
regular group-by for one dimensional data. SGB-A' is 
expected to perform similarly. 
Usage: In the example presented in Fig. 10, the bottom 
grouping node of the Eager approach merges all the tuples of 
T1 even though they have different J1 values. Notice that 
applying the transformation of Section IV.C.1 to this case 
would generate five tuples rather than one as the result of the 
bottom grouping node of the Eager approach. 

The validity of this equivalence relies on the following 
properties: (i) if two tuples t1a and t1b are grouped by the 
bottom aggregation of the Eager approach around a center 
point tuple, say t2, then t1a and t1b will always be matched 
with t2 by the Ɛ-Join of the Lazy approach; and (ii) tuples that 
are not merged with others at the bottom aggregation of the 
Eager approach, are always processed in the same way in both 
approaches. 

4)  Pushing Similarity Predicate from Join-Around to GB: 
The similarity predicate of the Join-Around can be 
(completely) pushed down to a grouping operator as shown in 
Fig. 11. The bottom aggregation of the Eager approach 
performs regular aggregation on G1 and similarity 
aggregation SGB-A [24] on J1 around J2 with 
MAX_GROUP_DIAMETER = 2Ɛ.  The value of J1 in a 
resulting tuple of SGB-A is the value of the central point, i.e., 
J2. This will enable generating the correct links using only a 
regular join in the Eager approach. This regular join is still 
required to obtain the values of G2 and S2. SGB-A generates 
at most one group per different value of J2, i.e., tuples with 
the same value of J2 in T2 are treated as a single central point.  
Usage: As illustrated in Fig. 11, the Eager approach avoids 
completely the use of the SJ operator, using instead a fast 
similarity group-by operator and a regular join. In the example 
shown in Fig. 11, the bottom grouping node of the Eager 
approach merges all the tuples of T1 even though they have 
different values of J1; applying the transformation of Section 
IV.C.1 would produce five tuples instead. 

GB

T1 T2
(G1,J1,S1) (G2,J2,S2)

SUM(S1) , SUM(S2)
GB

T1

T2

(G1,J1,S1)

(G2,J2,S2)

SUM(SS1) , SUM(S2)*CNT

SGB

SUM(S1 ) AS SS1, 
CNT

G1 , G2
G1 , G2

b ) Eager Aggregation a ) Lazy Aggregation 

T2

G1,
J1 around'MGD=10 J2 

R.r S.s

ε
ε

SGB-A'

       Group by
R.r around'MGD=2Ɛ S.s

5 2

5

1
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1

1

Q7: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE 
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T2

20 20 10
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Fig. 10 Pushing similarity predicate from Ɛ-Join to GB 

GB

T1 T2
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SUM(S1) , SUM(S2)
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SUM(SS1) , SUM(S2)*CNT

J1←J2, SUM(S1)
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G1 , G2
G1 , G2

b ) Eager Aggregation a ) Lazy Aggregation 

J1=J2
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ε
ε
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Q8: SELECT sum(S1), sum(S2) FROM T1, T2 WHERE 
J1 around J2 MAX_DIAMETER 10 GROUP BY G1, G2

T1
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G1 J1 S1
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15 40 5

G2 J2 S2
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Fig. 11 Pushing similarity predicate from Join-Around to GB 

The validity of this equivalence relies on the following 
properties: (i) if two tuples t1a and t1b are grouped by the 
bottom aggregation of the Eager approach around a center 
point tuple t2, t1a and t1b are always matched with t2 by the 
Join-Around of the Lazy approach; and (ii) if two tuples t1a 
and t1b share the same value of G1 and are linked to tuple t2 
in the Lazy approach, then t1a and t1b will always be grouped 
by the bottom aggregation of the Eager approach. 

V. IMPLEMENTING SIMILARITY JOIN 
This section presents the guidelines to implement two 

similarity join operators, Ɛ-Join and Join-Around, inside the 
query engine of standard RDBMSs. Although the presentation 
is intended to be applicable to any RDBMS, some specific 
details refer to our implementation in PostgreSQL. One of the 
goals of the implementation is to reuse and extend already 
available routines and structures to minimize the effort needed 
to realize these operators. The Ɛ-Join and Join-Around 
operators are implemented as extensions of the Sort Merge 
Join (SMJ) operator and consider the case of one dimensional 
numeric data and multiple similarity join predicates. 

To add support for SJs in the parser, the raw-parsing 
grammar rules, e.g., yacc rules in the case of PostgreSQL, are 
extended to recognize the syntax of the various new similarity 
join predicates presented in Section III. The parse-tree and 
query-tree data structures are extended to include the type and 
parameters, e.g., Ɛ, MD, of SJ predicates. The routines in 
charge of transforming the parse tree into the query tree are 
updated accordingly to process the new fields in the parse tree.  

A. The Optimizer 
Fig. 12.a presents the structure of the plan tree when one 

similarity join predicate is used. Given that the 



implementation is based on Sorted Merge Join, sort nodes that 
order by the similarity join attributes are added on top of the 
input plan trees. This order is assumed by the routines that 
find the similarity matches, i.e., links. When multiple 
similarity join predicates are used, they are processed one at a 
time. Fig. 12.b gives the structure of the plan tree generated 
when two similarity join predicates, a~b and c~d, are used. 
The bottom similarity join makes use of a~b while the top one 
uses c~d. The routines that find the similarity matches are 
presented in Section V.B. Another important change in the 
optimizer is in the way the number of tuples generated by a 
similarity aggregation node is estimated. This important 
estimation is used to compare the cost of different query 
execution plans. In the case of Join-Around, the number of 
resulting tuples can be estimated as the number of tuples in 
the inner input dataset. In the case of Ɛ-Join, more complex 
techniques, e.g., employing histograms of the density of 
elements in metric space [28], can be employed. The number 
of output tuples of the kNN-Join can be estimated as (# of 
tuples of outer input)*min(k, # of tuples of inner input) while 
the one of  the kD-Join can be estimated as min(# of tuples of 
outer input * # of tuples of inner input, k). The estimated 
number of output tuples can be used to reduce the cost of 
queries with several similarity join predicates. Since the order 
of processing these predicates does not change the final result, 
they can be arranged to minimize the overall cost of the query. 

B. The Executor 
When several similarity join predicates are used, the 

constructed query plan uses several similarity join nodes 
where the result of each node is pipelined to the next one as 
illustrated in Section V.A.  The executor routines that produce 
the similarity links in a SJ node are expected to handle one 
similarity join predicate. Additionally, they could be extended 
to handle any number of regular join predicates. The tuples 
received from the input plans have been previously sorted as 
explained in Section V.A. The executor routines process the 
input tuples synchronously following a plane sweep approach.  

Fig. 13 presents the algorithms of the main operation of the 
regular Sort Merge Join (13.a), Join-Around (13.b), and Ɛ-Join 
(13.c). The sections that were modified to support the SJ 
operators are shown in bold. It is clear from Fig. 13 that the 
use of the already implemented machinery that supports 
Sorted Merge Join as the basis to support similarity joins, 
allows a fast and efficient implementation of both SJ operators.  
The Sorted Merge Join algorithm in Fig. 13.a operates as 
follows. Lines 1 and 2 initialize the outer and inner tuples. 
Lines 4-9 advance the current inner and outer tuples until a 
match is found. When a match is found, Line 10 marks the 
inner tuple. Marking a tuple allows repositioning the inner 
cursor to the marked tuple later in the process. This key 
feature is already supported by the access method interface of 
PostgreSQL. Lines 13-18 join the current outer tuple with the 
current and following inner tuples as long as there is a match 
between outer and inner. Once an inner tuple that fails the 
match is found, the outer tuple is advanced (Line 19). Lines 
20 to 24 test if the new outer tuple matches the marked tuple. 
If  this is the case  the  inner cursor  is  restored to the  marked  

Join-Around (a,b), or
Epsilon-JoinƐ (a,b)

1. SELECT … FROM T1, T2   
    WHERE T1.a AROUND T2.b

Sort (a)

T1 T2

2. SELECT … FROM T1, T2   
    WHERE T1.a WITHIN Ɛ T2.b

Join-Around (c,d), or
Epsilon-JoinƐ2 (c,d)

1. SELECT … FROM T1, T2, T3 WHERE   
    T1.a AROUND T2.b AND T2.c AROUND T3.d

Sort (c)

T3

2. SELECT … FROM T1, T2, T3 WHERE   T1.a   
    WITHIN Ɛ1 OF T2.b AND T2.c WITHIN Ɛ1 OF T3.d

Join-Around (a,b), or
Epsilon-JoinƐ1 (a,b)

Sort (a)

T1 T2

a) One similarity join predicate b) Multiple similarity join predicates

Sort (b)

Sort (d)

Sort (b)

 
Fig. 12 Path/Plan trees for Join-Around and Ɛ-Join 

tuple and the new match is processed, otherwise the process 
continues looking for a new match. 

In the presentation of the algorithms, we assume that there 
is only one join predicate, i.e., the similarity predicate. The 
algorithms can be easily extended to handle the case of 
additional regular join predicates. The required changes to 
support Ɛ -Join are presented in Fig. 13.b. As expected, the 
function that evaluates if there is match between an outer and 
an inner tuples (Lines 4, 18, and 20) needs to be extended. In 
this case, the similarity predicate outer~inner is evaluated as 
distance(outer,inner) ≤ Ɛ . The block that produces the join 
links, in Lines 13-18, keeps track of the previous processed 
input tuple, i.e., prevInner. This tuple is used in Line 20 to test 
if there is a match between outer and prevInner. A positive 
result of this test means that there is at least one tuple in the 
range [mark, prevInner] that matches with the current outer. If 
this is the case, we restore the inner cursor to mark. The break 
command in Line 22 ensures that the process jumps to line 4 
to look for a match. This is required since outer may not 
match all the tuples in the range [mark, prevInner]. 

The required changes to support Join-Around are shown in 
Figures 13.c and 14. At any point, the algorithm keeps track of 
the current outer and inner and the next inner tuple, i.e., 
nextInner. Lines 2, 8, 16, and 22 in Fig. 13.c, and Lines 2 and 
6 in Fig. 14 maintain the correct nextInner tuple. The function 
that evaluates if there is match between an outer and an inner 
tuples (used in Lines 5 and 20 in Fig. 13.c and Line 4 in Fig. 
14) is also extended. In this case, the similarity predicate 
outer~inner is evaluated as distance(outer, inner) < distance 
(outer,nextInner). The function that evaluates if an inner tuple 
matches another inner tuple (used in lines 4 and 18 in Fig. 
13.c and in lines 1 and 3 in Fig. 14) evaluates the regular 
equality operator on the join attribute values. The expression 
outer>inner in line 1 of Fig. 14 ensures that the similarity join 
attribute of the outer tuple is greater than the one of the inner 
tuple. In contrast to the previous algorithms, when the process 
reaches line 10, there is not necessarily a match. This happens 
when there are consecutive inner tuples with the same join 
attribute values and the similarity join attribute of outer is 
greater than the one of inner. In this case, the inner cursor 
needs to be advanced until it is possible to check if there is a 
similarity match. This task is performed by check_match() as 
presented in Fig. 14. If a match is found, then the inner cursor 
is restored to mark and the process reports the join links. 
Otherwise,  the process  starts  looking  for  a  match  again  in 



 

SMJoin {
get initial outer tuple
get initial Inner tuple
do forever {
  while (outer != inner) {
    if (outer < inner)
      advance outer
    else
      advance inner
  }
  mark inner position
  
  do forever {
    do{
      join outer and inner 
      
      advance inner position
    }
    while (outer == inner) 
    advance outer position
    if (outer == mark)
      restore inner to mark

    else
      break
  }
}
}

INITIALIZE

SKIP_TEST

SKIPOUTER_ADVANCE
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EpsilonJoin {
get initial outer tuple
get initial inner tuple
do forever {
  while (outer !~ inner) {
    if (outer < inner)
      advance outer
    else
      advance inner
  }
  mark inner position

  do forever {
    do{
      join outer and inner
      prevInner ← inner      
      advance inner position
    }
    while (outer ~ inner) 
    advance outer position
    if (outer ~ prevInner)
      restore inner to mark
      break
    else
      break
  }
}
}

b. Epsilon-Join
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c. Join-Around
JoinAround {
get initial outer tuple
get initial inner and nextInner
do forever {
  while ((inner != nextInner)&&    
         (outer !~ inner)) {
      

    advance inner and nextInner
  }
  mark inner position
  if (!check_match()) continue
  do forever {
    do{
      join outer and inner
      prevInner ← inner
      advance inner and nextInner
    }
    while (prevInner == inner) 
    advance outer position
    if (outer ~ prevInner)
      restore inner to mark
      nextInner ← getNext(inner)
    else
      break
  }
}
}
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Fig. 13 Main operation of Epsilon-Join and Join-Around compared to the one of Sorted Merge Join 
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check_match() { 
if ((inner == nextInner) && (outer>inner)){
    do {advance inner and nextInner}
    while(inner == nextInner)
    if (outer ~ inner)
       restore inner to mark
       nextInner ← getNext(inner)
       return True //similarity match
    else return False
}
return True //no need to advance to check match
}  

Fig. 14 Routine check_match 

line 4. The block that reports the join links is also modified to 
keep track of the previous inner, i.e., prevInner. This block 
(lines 13 to 18) outputs join links for the current inner and the 
consecutive inner tuples that have the same value of the join 
attribute. prevInner is used in line 18 to test if two consecutive 
inner tuples have the same join attribute values. prevInner is 
also used in line 20 to test if the new outer is closer to 
prevInner than to inner. Notice that if the result of this test is 
true, the new outer matches all the tuples in the range [mark, 
prevInner] and the process continues reporting the join links 
directly (line 13). The presented algorithms are coded in 
PostgreSQL in the fashion of a state machine. Fig. 13.d shows 
the states associated to the different tasks. The implementation 
of Ɛ-Join and Join-Around use the same set of states employed 
by SMJ. 

The cost of the proposed SJ operators is close to the one of 
SMJ for reasonably small Ɛ ( for Ɛ-Join) and inner datasets 
without many duplicates (for Join-Around) because: (i) every 
outer tuple is read once in sequential order; (ii) the inner 
tuples are read in an almost sequential order, restoring the 
inner cursor to a previously read inner tuple is employed to 
generate the correct SJ links; (iii) in Ɛ -Join, if the inner cursor 
is restored, the length of the jump, i.e., distance from previous 
inner to marked tuple, is at most 2Ɛ; and (iv) in Join -Around, 
if  the  inner  cursor  is  restored,  all  the  tuples  in  the  range 

Reference Points Table
AccBalLevels1(R1): 110 account balance values in the range of C_acctbal [0,11000] 

SELECT * FROM CUSTOMER, AccBalLevels1
WHERE abs(C_acctbal - refpoint) <= Ɛ;

RegOps-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1
WHERE C_acctbal WITHIN Ɛ OF refpoint;SJ-EpsJoin

RegOps-EpsJoin

AccBalLevels2(R2): 11000 account balance values in the range of C_acctbal [0,11000] 

SELECT T1.c_custkey, T1.C_acctbal, T2.refpoint FROM    
  (SELECT c_custkey, C_acctbal, min(dist) as mindist  
    FROM (SELECT c_custkey, C_acctbal, refpoint, abs(    
    C_acctbal - refpoint) as dist FROM CUSTOMER, 
    AccBalLevels1) AS C1 GROUP BY c_custkey, C_acctbal) AS  
   T1, AccBalLevels1 T2
WHERE R1.mindist = abs(T1.C_acctbal - T2.refpoint);

SELECT c_custkey, C_acctbal, refpoint 
FROM CUSTOMER, AccBalLevels1
WHERE C_acctbal AROUND refpoint; 

SJ-JoinAround

SELECT * FROM CUSTOMER, AccBalLevels1 R1 , 
AccBalLevels2 R2 WHERE C_acctbal WITHIN 11 OF 
R1.refpoint AND R1.refpoint WITHIN 11 OF R2.refpoint;

AssocRule

SELECT * FROM CUSTOMER, AccBalLevels2 
WHERE C_acctbal WITHIN 11 OF refpoint AND 
2200<C_acctbal AND C_acctbal<=6600

PushSel

SELECT refpoint, sum(C_acctbal) 
FROM CUSTOMER, AccBalLevels[N] WHERE C_acctbal 
WITHIN 11 OF refpoint GROUP BY refpoint

Lazy-Eager [N]

Queries

 
Fig. 15 Reference Points table and queries used in performance evaluation 

 [marked tuple, previous inner tuple] share the same value of 
the similarity join attribute. 

VI. PERFORMANCE EVALUATION 
We implemented the Ɛ-Join and Join-Around, as described 

in Section V inside the PostgreSQL 8.2.4 query engine. In this 
section we evaluate the performance of these operators as well 
as the effectiveness of several transformation rules for SJs. 

A. Test Configuration 
The dataset used in the performance evaluation is based on 

the one specified by the TPC-H benchmark [33]. The 
Reference points tables and queries used in the tests are 
presented in Fig. 15. The default dataset scale factor (SF) is 5 
(5GB). All the experiments are performed on an Intel Dual 
Core 1.83GHz machine with 2GB RAM running Linux as OS. 



           
             Fig. 16 Performance of Join-Around                                 Fig. 17 Performance of Ɛ-Join                   Fig. 18 Effectiveness of Associativity transformation 

  
                        Fig. 19 Effectiveness of pushing selection under SJ                              Fig. 20 Effectiveness of Lazy and Eager aggregation transformations                          

B. Performance Evaluation 
We study the performance of the implemented operators 

comparing their execution time and scalability properties with 
the ones of queries that get similar results using only regular, 
i.e., non-similarity-based, operators. Notice that even though 
many implementation approaches have been proposed for SJs, 
e.g., [8], [9], [10], [11], [12], most of them have been 
proposed as standalone implementations not integrated within 
a DBMS engine and make use of specialized indices, data 
structures, partitioning, and access methods. The efficient 
integration of these techniques within a DBMS query engine 
and evaluation of their performance is a task for future work. 

1)  Join-Around Performance while Increasing Dataset Size: 
Fig. 16 gives the execution time of the SJ-JoinAround query 
compared to the one of the RegOps-JoinAround query that 
produces the same output using only regular operators.  This 
figure compares the performance of both queries for different 
values of scale factor (SF). The number of customers is 
150,000*SF while the number of central points is maintained 
constant. The execution time of RegOps-JoinAround grows 
from being about 20 times bigger than that of SJ-JoinAround 
for SF=1 to being about 200 times bigger for SF=8.  The poor 
performance of RegOps-JoinAround is due to a double nested 
loop join in its execution plan in addition to the use of an 
aggregation operation.  The Join-Around operator sorts each 
set once, and processes both sets synchronously. 

2)  Ɛ-Join Performance while Increasing Ɛ:  Fig. 17 gives the 
execution time of the SJ-EpsJoin query compared to the one 
of the RegOps-EpsJoin query that produces the same output. 
The results are presented for various values of Ɛ. The value of 
Ɛ is a fraction of the domain range. Specifically, the customer 
account balance domain uses values in the range [0,11000]. 

This experiment uses SF=1. The key result of this experiment 
is that the SJ-EpsJoin query performs significantly better than 
the RegOps-EpsJoin query for small values of Ɛ. For instance, 
when Ɛ=1, the execution time of RegOps-EpsJoin is 4.32 sec. 
while the one of SJ-EpsJoin is 0.96 sec., i.e., RegOps-EpsJoin 
is over 4 times faster. The advantage of the Ɛ -Join over the 
regular query gets reduced as the value of Ɛ increases and is 
almost negligible when the size of Ɛ is about 20% of the 
domain range. Having a good performance for small values of 
Ɛ is of key importance for the Ɛ -Join operator since similarity 
join queries with small Ɛ are among the most common and 
useful types of similarity-based operations. The performance 
of SJ-EpsJoin is better for small values of Ɛ because it 
generates shorter restorations of the inner cursor. On the other 
hand, RegOps-EpsJoin calculates the distance between all the 
combinations of outer and inner tuples. This requires in 
general the same amount of I/O independently of the value of 
Ɛ. The additional cost for high values of Ɛ is due to the 
increase in the number of links to be reported. 

3)  Effectiveness of Associativity transformation: AssocRule_ 
LHS and AssocRule_RHS in Fig. 18 represent the query 
AssocRule executed using plans that corresponds to the LHS 
and RHS of the rule IV.A.3.a respectively. The execution time 
of AssocRule_RHS is 9.2% of that of AssocRule_LHS. 
AssocRule_LHS joins (Ɛ-Join) first Customer (C) and R2 
generating 17,241,601 intermediate rows.  The execution time 
of AssocRule_RHS is much smaller because it joins the two 
smaller tables (R1 and R2) first generating only 2519 
intermediate rows. 

4)  Effectiveness of pushing selection under SJ: PushSel_LHS, 
PushSel_RHS1, and PushSel_RHS2 in Fig. 19 represent the 
query PushSel executed using plans that corresponds to the 
LHS and RHS of rule IV.A.1.a, and the RHS of rule IV.A.2.a 
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respectively. PushSel_LHS performs first the join (7,241,601 
intermediate rows) and then the selection. In PushSel_RHS1 
the selection operation has been pushed to the input 
corresponding to table Customer (300,872 intermediate rows). 
The execution time of PushSel_RHS1 is 73% of the one of 
PushSel_LHS. In PushSel_RHS2 the filtering benefit is furher 
improved by pushing selection operations on both inputs of 
the join. The execution time of PushSel_RHS2 is only 55% of 
the one of PushSel_LHS. 

5)  Effectiveness of Lazy and Eager aggregation 
transformations: In Fig. 20, LazyN and EagerN represent the 
query LazyEager executed using plans that corresponds to the 
expressions E1 and E2 of Theorem 3 respectively. The 
execution time of Eager1 is 35% of the one of Lazy1. The 
advantage of the Eager approach increases when the 
cardinality of the inner input grows as in Eager2 with an 
execution time that is only 9% of that of Lazy2.  

VII. CONCLUSIONS AND FUTURE WORK  
This paper focuses on the study and implementation of the 

Similarity Join (SJ) as a first-class database operator. Several 
previously proposed types of similarity join are considered in 
our study. In addition, a useful extension of the kNN-Join and 
Ɛ-Join, named Join-Around is introduced. The paper studies 
extensively the query operator properties of the Similarity Join. 
It presents multiple equivalence rules that not only consider 
direct extensions of known relational algebra rules but also 
exploit specific properties of similarity joins to enable more 
useful query transformations. The paper also studies the way 
the Eager and Lazy Aggregation transformation techniques 
can be applied to queries with JS and addresses the interaction 
and equivalences of the previously proposed Similarity 
Group-by (SGB) operators with the studied SJ operators. The 
paper presents guidelines to implement Join-Around and Ɛ -
Join as core operators of a DBMS query engine and the 
performance evaluation of this implementation in PostgreSQL. 
The performance study shows that the SJ-based queries 
perform significantly better than queries that get the same 
result using only regular operators. Furthermore this section 
shows the effectiveness of several studied transformation rules. 

Plans for future work include the study and integration of 
more complex similarity join strategies as database operators, 
in particular approaches that support multi-dimensional data; 
the extension of other operations, e,g., CUBE, ROLLUP, 
union and selection, as similarity-aware operators and the 
study of their interaction with SJ and SGB, the application of 
SJ and SGB operators to the area of privacy preservation and 
anonymity, and the study of similarity-based joins and 
aggregations as tools in business decision support systems. 
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