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Abstract.  Multidimensional indexing is concerned with the indexing of multi-attributed records, where queries can be 

applied on some or all of the attributes. Indexing multi-attributed records is referred to by the term multidimensional 
indexing because each record is viewed as a point in a multidimensional space with a number of dimensions that is equal to 
the number of attributes. The values of the point coordinates along each dimension are equivalent to the values of the 
corresponding attributes. In this paper, the PN-tree, a new index structure for multidimensional spaces, is presented. This 
index structure is an efficient structure for indexing multidimensional points and is parallel by nature. Moreover, the 
proposed index structure does not lose its efficiency if it is serially processed or if it is processed using a small number of 
processors. The PN-tree can take advantage of as many processors as the dimensionality of the space. The PN-tree makes 
use of B+-trees that have been developed and tested over years in many DBMSs. The PN-tree is compared to the Hybrid 
tree that is known for its superiority among various index structures. Experimental results show that parallel processing of 
the PN-tree reduces significantly the number of disk accesses involved in the search operation. Even in its serial case, the 
PN-tree outperforms the Hybrid tree for large database sizes. 
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1.     Introduction 

 
The field of multidimensional indexing has been an open research direction for many years. It has been 
motivated by the emergence of new applications. Such applications require an index structure that is 
capable of handling multi-attributed records. These index structures should handle the record’s multiple 
attributes equally without favoring any attributes over the others, unless explicitly required. Existing 
records can be queried by all or some of the attributes. For example, image databases may store 
hundreds of thousands or millions of images. A suitable index structure for image databases is one that 
is capable of indexing the images by their features. The extraction of features relies either on an expert 
system to extract the features of these images or on manual extraction. Once the image features are 
extracted, it is the responsibility of the indexing mechanism to build a set of indexes over these features 
to speed up the processing of the images. 

Indexing multi-attributed records is referred to by the term multidimensional indexing because each 
record is considered a point in a multidimensional space with a number of dimensions that is equal to 
the number of attributes. The value of the point coordinates along each dimension is proportional to the 
value of the corresponding attributes. The main objective is to minimize the number of disk accesses 
required to process various types of queries. In the ideal case, only disk pages that belong to the query 
result should be retrieved. Therefore, if possible, nearby points in the multidimensional space should be 



stored on the same disk page so that fewer disk accesses are needed to retrieve the query result.  
Because of the need for a fast response time, an intuitive approach is to process the indexes in 

parallel. However, existing index structures are not easy parallelizable. A straightforward 
parallelization may not improve significantly the performance of existing structures. Moreover, 
performance improvement saturates as the number of parallel processors increases, which means that 
parallelism can take advantage of only a small number of parallel processors. In this paper, the 
Projected Node tree or PN-tree is presented. PN-tree is parallel in nature but can also be executed 
efficiently using a single processor. This paper is concerned with multidimensional points or zero sized 
objects. Non-zero sized objects are beyond the scope of this work. The proposed index structure is 
intended to be suitable for dynamic databases where insertions and deletions are allowed along with the 
search operation. Various types of queries such as exact queries, range queries and nearest-neighbor 
queries are applicable to multidimensional spaces. In this paper, we focus on the performance of the 
range query. 

The B-tree and its variations have been widely used to index one-dimensional spaces. Almost every 
DBMS includes an implementation of the B+-tree along with its optimization techniques. Reusing well 
established technologies gives an added value to newly proposed structures. This paper makes use of 
the B+-tree to index multidimensional spaces. The PN-tree is built using multiple B+-trees. Hence, the 
realization of the PN-tree in any DBMS is relatively straightforward. 

 The remainder of the paper is organized as follows. Section 2 gives a brief description of related 
work. Section 3 introduces the proposed structure along with its insertion, deletion and splitting 
algorithms. The proposed structure is subjected to various experiments and the results are both 
analyzed and presented in Section 4. Comparative studies are presented in Section 5. Section 6 
concludes the paper. 

 
 
2.     Related work 

 
In this section, the basic concepts of multidimensional indexing are presented. A classification of 
existing multidimensional index structures along with a brief description of various structures is given 
in Section 2.1. Previous work on parallel multidimensional index structures is presented in Section 2.2. 
Since we compare the proposed structure with the Hybrid tree, more detail about the Hybrid tree is 
given in Section 2.3. 
 
 

2.1. Classification of multidimensional index structures  
 
Multidimensional index structures can be classified into: (1) structures designed for storing 
multidimensional points only. These methods are called Point Access Methods (PAMs), and (2) 
structures designed for spatial or non-zero objects. These methods are called Spatial Access Methods 
(SAMs). This classification has been used by many researchers [3, 9, 24, 25]. We describe briefly 
various multidimensional index structures in the following sections. For a more detailed survey, the 
reader may refer to [9]. 

 
 

2.1.1 Point access methods (PAMs) 
 
PAMs can be divided further into hierarchical and non-hierarchical structures. The k-d tree [4], which 
is a main memory structure, is a generalization to the hierarchical binary search tree for 
multidimensional points. The k-d tree is the basis for several disk based structures such as the local 



split decision (LSD) tree [11], the k-d-b tree [21], and SP-GIST[1]. The hB-tree [19] and the Buddy 
tree [24] are introduced to avoid the propagation of downward splits in the k-d-b tree. 

Non-hierarchical structures, e.g., the Grid files [20], represent records as multidimensional points. 
The underlying multidimensional space is formed by the cartesian product of the domain keys. Then, 
the space is divided into a grid, where each grid cell is stored in a disk page. Many variations and 
enhancements over grid files exist, e.g., the EXCELL method [27], the two-level Grid file [12], the 
multilayer Grid file [26], the twin Grid file [13], and the BANG (Balanced And Nested Grid) file [8]. 

 
 
2.1.2 Spatial access methods (SAMs) 
 

Major techniques for handling non-point or non zero-sized objects can be categorized into the 
following classes: 

(1) Object Mapping/Transformation: This approach maps the bounding rectangles of objects from a 
k-dimensional space into points in a 2k-dimensional space. Alternatively, the multidimensional space 
can be linearized using a space-filling curve and is indexed using any basic one-dimensional data 
structure for point data. This is the case for the UB-tree [2].  

 (2) Object Duplication/Clipping: The object clipping method decomposes an object into smaller yet 
simpler pieces such that each piece is included entirely in one subspace. The object identifier is 
duplicated in all these subspaces. 

(3) Object Bounding: Under this mechanism, the space is partitioned into subspaces such that each 
object is included entirely in one subspace.  

The Quad tree [17, 23] handles point and non-point objects. It handles non-point objects via object 
clipping or duplication. The R-tree [10] handles point and non-point objects using a rectangular 
Minimum Bounding Region (MBR). These MBRs may overlap. The R*-tree [3] is another variation of 
the R-tree. The R*-tree modifies the insertion and splitting algorithms of the R-tree using various 
criteria.  

The TV-tree [18] uses the least number of attributes possible to discriminate among objects. More 
attributes are introduced gradually to discriminate among objects. The SS-tree [29] is a variation of the 
R*-tree that uses spheres as bounding regions instead of rectangles. Both spheres and rectangles are 
combined in the SR-tree [16] to define the minimum bounding regions. The X-tree [5] is a variation of 
the R-tree that postpones node splitting by introducing supernodes that are larger than the usual block 
size. Node splitting occurs if minimum overlap is guaranteed. 
 

2.2. Parallel R-trees 
 

Kamel and Faloutsos propose a parallel architecture for the R tree [15]. They propose three different 
approaches to distribute the data among multiple disks to facilitate and speed up parallel data access. 
The first approach distributes the data points among d disks either in a round robin fashion or by 
partitioning the space into d partitions. An independent R-tree is built over each disk. The R-trees 
operate in parallel to answer the query. The second approach uses one R-tree whose nodes are 
‘supernodes’. Each supernode consists of d pages that are striped over the d disks. The third approach, 
referred to as the MX-R-tree or the multiplexed R-tree [7], is a single R-tree with each node spanning 
one page. The root is kept in main memory while other nodes are distributed over different disks. 
Nodes are assigned to disks based on a proximity measure. Nodes that are likely to qualify under the 
same query are separated into different disks. This heuristic increases parallelism as both nodes can be 
retrieved at the same time. Experimental results show the superiority of the MX-R-tree over the other 
approaches.  
 
 



 
2.3. The hybrid tree 

 
In the indexing methods discussed in the previous sections, it is noticed that the space is divided into 

subspaces. With respect to the way in which the space is divided into subspaces, these indexing 
methods can be divided into Bounding Region (BR)-based and Space Partitioning (SP)-based index 
structures. A BR-based index structure consists of bounding regions (BRs) that are arranged in a spatial 
hierarchy. On the other hand, an SP-based index structure consists of a space that is recursively 
partitioned into mutually disjoint subspaces.  

The Hybrid tree, proposed by Chakrabarti and Mehrotra in 1999 [6], combines positive aspects of 
BR-based data structures and SP-based data structures. The Hybrid tree chooses a single dimension to 
split a node. However, single dimension splits, like those in the k-d-b tree, may necessitate costly 
cascading splits. The Hybrid tree avoids the cascading splits problem by relaxing the above constraint, 
i.e., the indexed subspaces may overlap. This is similar to the BR-based data structures. The overlap is 
permitted for the sake of not violating any constraints placed over the storage utilization. The space 
partitioning in a Hybrid tree is represented using a k-d tree. The k-d tree is modified to allow for 
overlapping splits by storing two split positions: the first split position represents the right (or higher) 
boundary of the left (or lower side) partition (denoted by lsp or left side partition) while the second 
split position represents the left boundary of the right partition (denoted by rsp or right side partition). 
Moreover, the dead space in each node is eliminated by storing few bits that represent the coordinates 
of the live space. These bits help reduce the overhead of empty nodes. 
 
 

3.     The PN-tree 
 

In this section, we present the PN-tree, a new disk-based multidimensional index structure along with 
its insertion, node splitting, searching, and deletion algorithms. The details of how to parallelize and 
distribute the PN-tree over multiple disks are presented at the end of this section. 
 
 

3.1. The basic idea 
 

The basic idea behind the PN-tree can be summarized as follows (refer to Figure 1 for illustration): 
• Points are clustered into multidimensional nodes. 
• Each node is projected over each dimension. 
• Projections over each dimension are indexed separately using one-dimensional index structures. 



 
Figure 1. Points are clustered into nodes then these nodes are projected over each dimension. 

 
 
First, points are clustered multidimensionally into multidimensional nodes so as to cluster nearby 

points in the multidimensional space into the same node and consequently to store them on the same 
disk page. Clustering speeds the processing of range queries.  

Second, we project the nodes over each of the n-dimensions in an attempt to obtain n different views 
of the data space. Then, the nodes that are formed from the previous step are projected over each 
dimension. As a result, there will be a set of one-dimensional intervals over each dimension 
representing the node projections. 

Finally, projections over each dimension can be considered as a view of the multidimensional space 
that is suitable for indexing. Using these projections, the original space can be reconstructed to some 
extent. 
 
 

3.2. The index structure 
 
We introduce the following three structures that will cooperate together and work in harmony to yield 
the PN-tree: 

(1) A set of buckets. Each bucket stores one node that contains a set of points. The size of the 
bucket is equal to a disk page size. Each bucket is identified by its disk block number. 

(2) A set of one-dimensional index structures. This set of one-dimensional index structures 
indexes the projections of nodes over different dimensions. These index structures store the line 
segments that represent node projections. Building these one-dimensional index structures is detailed in 
Section 3.7. 

(3) A simple multidimensional index structure. This multidimensional index structure stores the 
centroids of the nodes. Node centroids are used by the insertion algorithm to select the closest node to 
the point to be inserted. The overhead involved in the storage of node centroids is not high. This is 
because the number of cluster nodes is much less than the number of points. 
 

3.3. The insertion algorithm 
 

The insertion algorithm and its associated node splitting algorithm are responsible for clustering nearby 
points into the same node. Efficient insertion and splitting algorithms eliminate the need for other 
clustering techniques. The insertion algorithm can be summarized as follows: 



• Choose the node whose centroid is closest to the point to be inserted. 
• Insert the point into the chosen node.  
• If an overflow occurs then split the chosen node. 
 

Once a new point arrives, the algorithm picks the node with the closest centroid to accommodate the 
incoming point. The multidimensional index structure that stores the node centroids is probed in this 
step. A nearest-neighbor search is performed over this structure to pick the nearest centroid. The 
nearest-neighbor search is based on the branch-and-bound technique [22]. The insertion of incoming 
points into the nodes with the nearest centroids clusters nearby points into the same node. 

The pseudo code of the insertion algorithm is given below. We use four functions to handle the 
multidimensional index structure responsible for storing node centroids. These four functions will be 
used while describing other algorithms throughout the paper. 

InsertCentroid (NodeId N, Point C). This function stores the centroid C along with its corresponding 
'NodeId' in the multidimensional structure. 

UpdateCentroid (NodeId N, Point OldC, Point NewC). This function updates the centroid of node N 
from 'OldC' to 'NewC'. 

DeleteCentroid (NodeId N, Point C). This function deletes the centroid C of node N from the 
multidimensional structure. 

NodeId GetNearestNeighbor(Point P). This function returns the node whose centroid is closest to P. 
 
We index node projections over each dimension using one-dimensional index structures. We use the 

following functions to handle interval projections. 
InsertInterval (integer D, NodeId N, real Start, real End). This function inserts the projection of 

node N over dimension D. The projection is specified by the one-dimensional interval with 'Start' and 
'End' as its start and end points, respectively. 

DeleteInterval (integer D, NodeId N, real Start, real End). This function deletes the interval of node 
N whose boundaries are 'Start' and 'End' from the one-dimensional index structure built over dimension 
number 'D'. 

UpdateInterval (integer D, NodeId N, real OldStart, real OldEnd, real NewStart, real NewEnd). 
This function updates the projections of node N from 'OldStart' and 'OldEnd' to 'NewStart' and 
'NewEnd', respectively, in the one-dimensional index structure built over dimension number 'D'. 

List GetPartialResult(integer D, real Start, real End). This function returns a list of all nodes whose 
projection over dimension number 'D' intersects the search range projection over the same dimension. 

 
Algorithm 1: Insertion  
 Given a point P, it is required to insert P in the structure. 
 Step1: N=GetNearestNeighbor(P), [Get the node whose centroid is closest to P]  
   if the structure is empty, create a new node N 
 Step2: insert P into N 
 Step3: if an overflow occurs then 
     invoke Split to split N into N1 and N2 
    DeleteCentroid (N, N.Centroid). 
    InsertCentroid (N1, Centroid(N1)). 
    InsertCentroid (N2, Centroid(N2)). 
     stop 
 Step4: UpdateCentroid (N, N.Centroid, Centroid(N)) [Updates   centroid of node N  
                                 after insertion] 
 Step5: for i=1to NumberOfDimensions 
  begin 



   if Pi<N.mini then UpdateInterval(i, N, N.mini, N.maxi, Pi, N.maxi) 

   if Pi>N.maxi then UpdateInterval(i, N, N.mini, N.maxi, N.mini, Pi) 

  end 
 
End 
 
Notes: 

N.mini denotes the lower bound of node N along the ith dimension. 

N.maxi denotes the upper bound of node N along the ith dimension. 

N.Centroid denotes the old centroid of node N before it is updated. 
 
Centroid(N) this function computes the new centroid of node N. 

 
 
3.4. The node-splitting algorithm 
 

The splitting algorithms of multidimensional index structures have evolved over time. Once a node 
overflows, it is split into two new nodes. Various criteria have been used to split overflowing nodes. 
For example, the R-tree [10] minimizes the area of bounding rectangles. The R*-tree [3] takes into 
account the minimization of the area of each rectangle, the overlap among rectangles, the margin of 
each rectangle and the storage utilization constraints. Both the SS-tree [29] and the SR-tree [16] try to 
minimize the variance among points in each node. 

The node-splitting algorithm used by the Hybrid tree [6], which is also used in the PN-tree, can be 
summarized as follows: 
• Choose the split dimension (the dimension with the largest extent). 
• Choose the split position: 

- Select the split position at the middle of the node.  
- If storage utilization is violated, shift the split position in the proper direction to satisfy 
utilization requirements. 
 

Notice that the following two decisions have to be made when splitting a node: First, which 
dimension to split along. Second, where to split along the chosen dimension. It was proved by 
Chakrabarti and Mehrotra that choosing the dimension with the largest extent as the split dimension 
minimizes the increase in the Expected Disk Access (EDA). Also, the split position should be chosen at 
the middle of the node. The proof is stated in [6]. Storage utilization requirements may be violated if 
we split at the middle of the node. In this case, we try to make the split as close to the middle of the 
node as possible provided that utilization constraints are satisfied. In few situations, the utilization 
constraints may not be satisfied, e.g., if a group of points stand in a straight line that coincides with the 
split position. Adding this group to either partition causes the other partition to be underutilized. These 
situations are rare in practice and cause no problem if we allow few nodes to remain underutilized. 
Minimization of the EDA keeps nearby points clustered after node splitting. This means that the node- 
splitting algorithm works side by side with the insertion algorithm to preserve the clustering of points. 

 
 
3.5. The search algorithm 

 
In this section, the search algorithm is presented for range queries. The range queries are in the form of 



a query point and a distance d. It is required to find all points within distance d from the query point. 
The search algorithm is summarized as follows (refer to Figure 2 for illustration): 
• Project the search range over each dimension. 
• For each dimension i, include the nodes whose projections intersect the search range projection in a 

partial result set Ri. 
• Intersect the partial result sets R1, R2, …, Rk to yield the result set R, where k is the 

dimensionality. 
• Retrieve member nodes of R from disk. 
 
 As described above, the search range is projected over all dimensions. A node belongs to the search 
range if its projections over all dimensions intersect the range query projections over the same 
dimensions. The search algorithm is described in detail in Algorithm 2. 

 
Figure 2. The search operation. 

 
 
One problem exists and is illustrated in Figure 3. This problem is referred to as the false alarm 

problem. The projections of a node over all dimensions may intersect the projections of the query 
range. However, the node itself does not intersect the query range and the corresponding disk page 
records do not belong to the query result. A large number of false alarms degrade the performance. 
Fortunately, these false alarms are not frequent under usual conditions. False alarms are considered a 
key factor in analyzing the performance of the structure as we describe in the performance evaluation 
section. 



 
Figure 3. The false alarm problem. 

 
Algorithm 2: RangeQuerySearch 
 Given a query point QP and a search range radius R. It is required to retrieve all points that 
belong to the specified search range 
 Step1: [get partial results from each dimension] 
   for i=1 to NoOfDimensions 
    Listi= GetPartialResult(i,QPi-R, QPi+R) 

 Step2: [Intersect partial result sets] 
   d=NoOfDimensions 
   while d>1 do 
    begin 
       for i=1 to (d div 2) 
     Listi= Intersect(Listi,Listi+(d+1) div 2) 

       d= (d+1) div 2 
    end 
 Step3: retrieve nodes in List1 from disk 

End 
 
 
3.6. The deletion algorithm 
 

The deletion algorithm is straightforward and is summarized in the following steps: 
• Search for the point to be deleted 
• If not found then error 
      else 

- Remove the point from the enclosing node 
- Adjust the node centroid 
- Adjust node projections if necessary 
- If the node underflows, then remove the whole node and reinsert its orphaned points 
 

     Notice that a node underflows if it contains less than a specified percentage of its full capacity. 
Experimental results of [3, 29] show that setting this percentage to 40% gives the best results. This 
means that a minimum utilization of 40% is guaranteed. However, a node containing 40% of its 



maximum capacity is rare. Node utilization is usually much higher using real data sets. In the PN-tree, 
the typical storage utilization is around 75%.  The algorithm is described in detail in Algorithms 3 and 
4. 
 
 
Algorithm 3: Deletion  
 Given a point P, it is required to delete this point from the structure 
 Step1: N=Search(P)   [get the node N containing P] 
 Step2: remove P from N 
 Step3: if N.NoOfPoints<m  then Invoke RemoveNode(N) (Algorithm 4) and stop 
 Step4: UpdateCentroid(N, N.Centroid, Centroid(N))  [update the centroid of node N] 
 Step5: [Update the projections of N over all dimensions] 
  for i=1 to NoOfDimensions 
   if Pi=N.mini then 

      begin 

          Calculate LB, the new lower bound of N along the ith dimension  

                   UpdateInterval(i, N, N.mini, N.maxi, LB, N.maxi)  

      end 
   else Pi=N.maxi then 

      begin 

          Calculate UB, the new upper bound of N along the ith dimension  

                   UpdateInterval(i, N, N.mini, N.maxi, N.mini, UB)  

      end 
End 
 
Algorithm 4: RemoveNode 
 Given an underflowing node N, it is required to remove N from the structure. The remaining 
points are reinserted 
 Step1: DeleteCentroid (N, N.Centroid)  [delete the centroid of node N] 
 Step2: [remove the projections of node N over all dimensions] 
 Step3: for i=1 to NoOfDimensions     
   DeleteInterval(i, N, N.mini,N.maxi) 

 Step4: [reinsert orphaned points] 
  for i=1 to N.NoOfPoint 
   Insert(N[i]) 
End 
 
 
     Modifying the coordinates of a point, say P, is performed by deleting P then reinserting it after 
being modified. This algorithm allows the structure to reorganize and redistribute the modified points 
into nodes. 
 
 

3.7. Building one-dimensional indexes 
 

The PN-tree uses one-dimensional indexes to store the projections of each node over the various 
dimensions. Any one-dimensional index structure that is already developed and tested can be used to 



accomplish this task. Simply, the required one-dimensional index structure should support the indexing 
of rectilinear line segments, i.e. segments that are parallel to the x-axis. Various techniques have been 

proposed in the literature to index line segments [14, 23]. In this section, the B+-tree is proposed and is 
incorporated in our structure. The B+-tree is chosen because it is a well developed technology that has 
come to a level of robustness and maturity over the years. The choice of the B+-tree makes it relatively 
easy to incorporate the PN-tree into commercial DBMSs. 

The projections of data nodes over various dimensions are stored so that they can be used in the 
processing of queries. The nodes whose projections intersect the search range projections over all 
dimensions should be retrieved. From Figure 4, for two line segments not to intersect, the following 
condition must hold: E1<S2 or E2<S1, where S1 and S2 are the start points of the two line segments 

and E1and E2 are the end points of the two line segments, respectively. This condition can be stated as 

follows: “for two line segments not to intersect, the first line segment must end before the second line 
segment begins or the second line segment must end before the first line segment begins.” 

 We propose to build two B+-trees over each dimension: One B+-tree for the start values of the 

projection intervals and the other B+-tree for the end values. The B+-tree consists of two parts: the 
index part and the sequence set. The index part is used to speed up the search process while the 
sequence set is used for sequential processing of the stored data. 

 The B+-tree that stores the start values of the intervals is searched for the first value that is greater 
than the end value of the search range projection. Then, the sequence set is traced to exclude all the 

intervals that follow. Analogous steps are performed on the other B+-tree that stores the end values of 
the intervals. The first value that is less than the start value of the search range projection is reached. It 

is noted here that the B+-tree that stores the start values of the intervals has a sequence set that is sorted 

in an ascending order. On the other hand, the B+-tree that stores the end values of the intervals has a 

sequence set that is sorted in a descending order. By following the two B+-trees, the intervals that 
begin after the end of the search range projection and those that end before the search range interval 
starts are removed. The remaining intervals are those that intersect the search range projection. 
 

 
Figure 4. The condition for two line segments not to intersect. 

 
 

3.8. Parallelizing the proposed structure 
 

One of the major advantages of the proposed PN-tree is that it is parallel by nature. It consists of a set 
of one-dimensional indexes built over the various dimensions. Each dimension is indexed separately 
using its own one-dimensional structure. Thus, the processing of the PN-tree can be distributed among 
many processors. Each processor deals with one of the dimensions. This means that the PN-tree can 
take advantage of as many processors as the dimensionality of the space. This does not mean that it is 
an obligation to use as many processors as the dimensionality. For example, if there are n-dimensions 
and n/2 processors, then each processor will be responsible for indexing two dimensions. 



The indexing process can be enhanced and parallelism can be increased if the records that belong to 
the query result are retrieved in parallel. This can be achieved if the data is declustered over multiple 
disks. The problem of distributing the data over multiple disks is discussed in the next subsection. 
 
 
3.9. Declustering the index over multiple disks 

 
The declustering method used here, termed the proximity index (PI), was first suggested by Faloutsos 
and Kamel in the context of the MX-R-tree [7]. The Proximity Index (‘PI’) assigns the new nodes 
resulting from the splitting of an overflowing node to the disk with the ‘least similar’ nodes (i.e., least 
likely to qualify in the same range query). The formulas to compute the proximity index of a node N0 

to a disk that contains a set of rectangles N1, ....., Nk is based on the proximity measure: This measure 

compares two rectangles and assesses the probability that they will be retrieved by the same query. The 
proximity index of a new node N0 and a disk D (that contains the sibling nodes N1, ........, Nk) is the 

proximity of the most ‘proximal’ node to N0. 

 
4. Experimental Results 
 
In Section 4.1, various comparison parameters that affect the performance of multidimensional 
structures are stated. Then, the effect of each parameter is tested and is detailed in the subsequent 
sections. Data sets are synthetically composed in a multidimensional space such that the point 
coordinate values over each dimension range from zero to one. The points’ coordinate values are 
approximated to six decimal digits. The setting of each experiment is detailed in its own section. 

 
 
4.1. Comparison parameters 
 
The basic parameters that are involved in shaping the performance curves are summarized as follows: 

1- The page size. The size of the disk page affects the performance of index structures. This effect is 
detailed in Section 4.2. As the page size increases, more points can be saved in the same disk page. 
This reduces the number of nodes or equivalently the number of disk pages. As a result, the height of 
the tree for hierarchical structures is reduced. This decrease in tree height reduces the number of disk 
accesses. However, in the PN-tree, other factors play an important role in increasing or decreasing the 
disk access.  

2- The dimensionality. The number of dimensions in the space is an important factor when 
evaluating the performance of index structures. Many index structures do not perform well as the 
dimensionality increases. The performance of our structure under the variation in dimensionalities is 
described in Section 4.3. 

3- The number of processors. The number of processors cooperating to index the data is a factor that 
affects the performance. This issue is addressed in Section 4.4. 

4- The number of inserted points. Finally, the performance of the PN-tree is tested under various 
numbers of inserted points. This performance study is described in Section 4.5. 

All tests are run on a Pentium II, 233 MHz, IBM machine with 64 MB RAM. All programs are 
written in C++ and run under Red Hat Linux Release 6.2. 

 
 
 

 



4.2. The effect of the page size 
 

A simulation experiment over 100,000 uniformly distributed points in a 16-dimensional space is 
carried out. The size of the disk page is varied and the performance of the PN-tree is evaluated under 
various page sizes. The experiment is conducted for both the serial and the parallel cases of the PN-
tree. The experiment is carried out for both a 5% and a 10% search ranges, i.e., a search range with a 
radius that is equal to either 5% or 10% of the whole space. The results are illustrated in Figures 5 and 
6 for the serial and parallel cases, respectively.  

The effect of the disk page is controlled by two factors. First, as the size of the disk page increases, 
nodes with larger sizes are obtained. The overlap among such nodes increases specially for higher 
dimensionalities. Such overlap deteriorates the performance. Second, as the size of the disk page 
decreases, a large number of nodes are obtained. Such a large number of nodes require one-
dimensional indexes with many tree levels. The increase in tree height results in an increase in the 
number of disk accesses. 

The effect of these two factors is depicted in Figures 5 and 6. Figure 5 illustrates the performance of 
the serial case whereas Figure 6 illustrates the parallel case where maximum parallelism is assumed, 
i.e., the number of processors is equal to the number of dimensions. Notice that as the size of the disk 
page decreases, the performance improves. This trend continues till a page size of 1KB is reached. For 
disk pages smaller than 1KB, a large number of nodes emerges, and hence the one-dimensional index 
structures increase in height and the performance deteriorates.  

A page size of 1KB is considered the best choice for the PN-tree.  This is why the experiments 
shown in Figures 5 and 6 are repeated with a focus into the interval between zero and two KB disk 
pages. The results are illustrated in Figures 7 and 8.  

 
Figure 5. The effect of the page size (the serial case). 

 

 
Figure 6. The effect of the page size (the parallel case). 



 

 
Figure 7. The effect of a page size zoomed around 1KB (the serial case). 

 

 
Figure 8. The effect of a page size zoomed around 1KB (the parallel case). 

 

 
4.3. The effect of dimensionality 

 
The performance of many index structures deteriorates as the dimensionality increases. This 
phenomenon is known as the dimensionality curse [28]. This happens because the overlap among 
nodes increases in higher dimensionalities. This increased overlap affects adversely the performance of 
multidimensional structures. For hierarchical structures, many search paths will be active at the same 
time. This is because, most likely, the search range intersects many overlapping parent nodes. 

In the PN-tree, the performance behavior with the dimensionality is completely different. Before 
discussing the performance of both the serial and the parallel cases of the PN-tree, it is important to 
note that the performance is affected by two factors: (1) the disk accesses involved in processing the 
one-dimensional index structures built over each dimension (2) the disk accesses involved in retrieving 
from disk the records that result from the intersection of partial result sets over the various dimensions. 

The second factor is divided subsequently into the disk accesses involved in retrieving records that 
belong to the query result, and the disk accesses involved in false alarms. A disk page that is retrieved 
from disk and that contains no points that belong to the query result is considered a false alarm. 

False alarms occur because the projections of a node over all indexed dimensions may intersect the 
projections of the search range over the same dimensions, while the node itself does not intersect the 
query range. Refer to Figure 3 for illustration. 

The overhead involved in processing the one-dimensional index structures built over each 
dimension increases as the dimensionality increases. However, the number of disk accesses involved in 
false alarms decreases with the increase in the dimensionality. This can be explained by considering 
each new dimension as if it were a new piece of information about the multidimensional space. For 
each new dimension, a new index is built over this dimension and more information is stored about the 
space. This increased amount of information results in a reduced number of disk accesses involved in 
false alarms. 



Figure 9 illustrates the performance of our structure in both the serial and the parallel cases for range 
queries with a radius equal to 5% of the whole space. Figure 10 gives the performance for range 
queries with a radius equal to 10% of the whole space. The test is performed over 100,000 uniformly 
distributed points with various dimensionalities. In the parallel case, the number of processors is equal 
to the dimensionality of the space. 

Notice that, for the serial case, the performance improves as the dimensionality increases. This 
performance improvement saturates as the increase in the dimensionality continues. From Figures 9 
and 10, the performance of range queries with 10% radius saturates slower than that of queries with 5% 
radius. This is because as the search range increases, more false alarms occur. 

For the parallel case, the performance is stable with the dimensionality. This is because the increase 
in the number of disk accesses involved in processing the one-dimensional indexes is circumvented by 
increasing the number of processors. From the previous analysis, we conclude that the proposed PN-
tree does not lose its efficiency for high dimensional spaces. 

 
Figure 9. The dimensionality effect for a 5% search range. 

 

 
Figure 10. The dimensionality effect for a 10% search range. 

 
 

4.4. The effect of the number of parallel processors 
 
As described in Section 3.8, the PN-tree can be processed using multiple parallel processors. In this 
section, we study the effect of increasing the number of processors on the performance of the PN-tree. 
We perform the experiment using 100,000 uniformly distributed points in a 16-dimensional space. The 
number of parallel processors varies from one to 16. 

The PN-tree can take advantage of as many processors as the dimensionality of the space. The result 
of the experiment is given in Figure 11. 



From Figure 11, notice that the number of disk accesses decreases as the number of processors 
increases. However, the rate of decrease is not constant. It saturates as the number of processors 
increases. This saturation occurs because most of the features of the space get captured using the first 
dimensions. This implies that it is not necessary to use as many processors as the dimensionality of the 
space. A good performance can be obtained with a much less number of processors. As can be seen 
from the figure, the difference in the number of disk accesses between ten processors and sixteen 
processors is insignificant. 

 
Figure 11. The effect of the number of parallel processors. 

 
 

4.5. The effect of the number of inserted points 
 

In this section, we study the performance of the PN-tree for various data sizes. We use a 16-
dimensional space and vary the number of points from 10,000 to 200,000 points with increments of 
10,000 points. The experiment is conducted for a 5% and a 10% search ranges. The results are given in 
Figures 12 and 13, respectively.  
 

 
Figure 12. The effect of the number of inserted points (5% search range). 



 
Figure 13. The effect of the number of inserted points (10% search range). 

 
 
 
 
 
5. Comparative Study 
 
In this section, the performance of the PN-tree is compared to the Hybrid tree. The Hybrid tree is 
selected because of its superiority over other index structures [6]. The two index structures have some 
commonalities. The node-splitting algorithm of the PN-tree is the same as the one for splitting data 
nodes in the Hybrid tree. Both structures select the split dimension as the one with the largest extent. 
Also, both structures select the split position so that the node is split into two halves along the split 
dimension provided that no utilization constraints are violated. Both structures try to minimize the 
increase in the expected disk access (EDA) as described in Section 3. 

We test the performance of the two index structures using real data sets. The real data sets consist of 
16-d vectors generated by extracting color histograms from the Corel database of images. These data 
sets have also been used by Chakrabarti and Mehrotra [6] while testing their Hybrid tree.  

The experiment is carried out for circular range queries with various radii. Figure 14 gives the result 
for a radius that is equal to 5% of the whole space. It is noticed that parallel processing of the PN-tree 
improves the performance significantly. Moreover, the performance of the PN-tree using parallel 
processing scales very well with the increase in the number of inserted points. 

It can be seen from Figure 14 that serial processing of the PN-tree outperforms the Hybrid tree 
when the number of points exceeds 150,000 points. This is because the PN-tree has some overhead 
involved in the processing of the one-dimensional indexes of each dimension. For example, if there are 
16 dimensions and two disk accesses are needed to process each one-dimensional index structure, then 
there will be an overhead of 32 disk accesses involved in processing of indexes. This overhead is not 
justifiable unless a large number of points is inserted. 

Figure 15 gives similar results for range queries with a radius that is equal to 10% of the whole 
space. Notice that the serial processing of the PN-tree outperforms the Hybrid tree after 70,000 points 
are inserted. This means that the PN-tree performs better under large search ranges. The reason is that 
as the radius of the search range increases, upon processing range queries, many search paths will be 
active at the same time in the Hybrid tree. This behavior degrades the search performance from 
logarithmic to linear. 

In conclusion, the PN-tree improves the performance significantly with parallel processing and does 
not lose its efficiency with serial processing. In the serial case, the PN-tree outperforms the Hybrid tree 
for a large number of points and for large radii of search ranges. 
 



 
Figure 14. The PN-tree versus the Hybrid tree for 5% search range. 

 

 
Figure 15. The PN-tree versus the Hybrid tree for 10% search range. 

 
 
6. Conclusions 
 
A new efficient index structure for multidimensional spaces has been presented. The new index 
structure is parallel and distributed in nature and can make use of as many processors as the 
dimensionality of the space. Moreover, the PN-tree does not lose its efficiency if it is serially processed 
over one processor. 

The PN-tree clusters points multidimensionally into nodes by using simple insertion and splitting 
techniques. The projections of these nodes over each dimension are then indexed using any one-
dimensional index structures. 

The PN-tree scales with both the number of dimensions and the number of inserted points. 
Moreover, the PN-tree can be tuned to use parallel processors to compromise between the cost and the 
run-time speed of the query. 

According to simulation results, the PN-tree outperforms already existing techniques for a large 
number of points and for large search ranges. In summary, the PN-tree is an efficient index structure 
for both serial and parallel indexing of multidimensional data sets. 
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