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Abstract. Multidimensional indexing is concerned with timeléxing of multi-attributed records, where queas be
applied on some or all of the attributes. Indexmglti-attributed records is referred to by the temmitidimensional
indexingbecause each record is viewed as a point in ddiménsional space with a number of dimensions ithatjual to
the number of attributes. The values of the pootrdinates along each dimension are equivalenhd¢ovalues of the
corresponding attributes. In this paper, Bié-tree a new index structure for multidimensional spatepresented. This
index structure is an efficient structure for inohgx multidimensional points and is parallel by matuMoreover, the
proposed index structure does not lose its effayeahit is serially processed or if it is procedsasing a small number of
processors. ThEN-treecan take advantage of as many processors asmtensibnality of the space. TIN-treemakes
use of B-trees that have been developed and tested oves yeamany DBMSs. Th@N-treeis compared to thelybrid
treethat is known for its superiority among variougéx structures. Experimental results show thatlighgarocessing of
the PN-treereduces significantly the number of disk accegseslved in the search operation. Even in its $erdse, the
PN-treeoutperforms thélybrid treefor large database sizes.
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1. Introduction

The field of multidimensional indexing has been an open reseasgtidn for many years. It has been
motivated by the emergence of new applications. Such applicatignser@n index structure that is
capable of handling multi-attributed records. These index structures should handleard’s multiple
attributes equally without favoring any attributes over the ethamless explicitly required. Existing
records can be queried by all or some of the attributes. For exampge databases may store
hundreds of thousands or millions of images. A suitable index strdotureage databases is one that
is capable of indexing the images by their features. The @rtraaf features relies either on an expert
system to extract the features of these images or on mexiattion. Once the image features are
extracted, it is the responsibility of the indexing mechanism to build a setexas over these features
to speed up the processing of the images.

Indexing multi-attributed records is referred to by the taraitidimensional indexingecause each
record is considered a point in a multidimensional space with a mwhlde@nensions that is equal to
the number of attributes. The value of the point coordinates alohgleaension is proportional to the
value of the corresponding attributes. The main objective is to nzi@ithe number of disk accesses
required to process various types of queries. In the ideal casdjisklyages that belong to the query
result should be retrieved. Therefore, if possible, nearby points in the meltisional space should be



stored on the same disk page so that fewer disk accesses are needed to retriesertdsitjue

Because of the need for a fast response time, an intuitive appioda process the indexes in
parallel. However, existing index structures are not easy |gaable. A straightforward
parallelization may not improve significantly the performanceegisting structures. Moreover,
performance improvement saturates as the number of parallel gpx@screases, which means that
parallelism can take advantage of only a small number oflglapgocessors. In this paper, the
Projected Noddree orPN-treeis presentedPN-treeis parallel in nature but can also be executed
efficiently using a single processor. This paper is concernédmittidimensional points or zero sized
objects. Non-zero sized objects are beyond the scope of this wuekproposed index structure is
intended to be suitable for dynamic databases where insertions and deletiaihmaged along with the
search operation. Various types of queries such as exact quengs, queries and nearest-neighbor
gueries are applicable to multidimensional spaces. In this papdiQous on the performance of the
range query.

The B-tree and its variations have been widely used to index one-dimanspaces. Almost every
DBMS includes an implementation of thé-Bee along with its optimization techniques. Reusing well
established technologies gives an added value to newly proposedrssudthis paper makes use of
the B'-tree to index multidimensional spaces. Hié¢-treeis built using multiple B-trees. Hence, the
realization of thd®N-treein any DBMS is relatively straightforward.

The remainder of the paper is organized as follows. Section 2 gilkesf description of related
work. Section 3 introduces the proposed structure along with itstiomsedeletion and splitting
algorithms. The proposed structure is subjected to various experimedtshe results are both
analyzed and presented in Section 4. Comparative studies are mreser8ection 5. Section 6
concludes the paper.

2. Redated work

In this section, the basic concepts of multidimensional indexing asemied. A classification of
existing multidimensional index structures along with a brietdjeison of various structures is given
in Section 2.1. Previous work on parallel multidimensional index strucsigesented in Section 2.2.
Since we compare the proposed structure withHylerid tree more detail about thelybrid treeis
given in Section 2.3.

2.1. Classification of multidimensional index structures

Multidimensional index structures can be classified into: (1) wtres designed for storing
multidimensional points only. These methods are caRetht Access Method@PAMs), and (2)
structures designed for spatial or non-zero objects. These methocHladSpatial Access Methods
(SAMs). This classification has been used by many researf3e®s 24, 25]. We describe briefly
various multidimensional index structures in the following sections.aFmore detailed survey, the
reader may refer to [9].

2.1.1 Point access methods (PAMS)
PAMs can be divided further into hierarchical and non-hierarcktcattures. The k-d tree [4], which

is a main memory structure, is a generalization to the blécal binary search tree for
multidimensional points. The k-d tree is the basis for severklldised structures such as the local



split decision (LSD) tree [11], the k-d-b tree [21], and SP-GIST[hE hB-tree [19] and the Buddy
tree [24] are introduced to avoid the propagation of downward splits in the k-d-b tree.
Non-hierarchical structures, e.g., the Grid files [20], repremmadrds as multidimensional points.
The underlying multidimensional space is formed by the carigsioduct of the domain keys. Then,
the space is divided into a grid, where each grid cell is storeddisk page. Many variations and
enhancements over grid files exist, e.g., the EXCELL method [27}wibdevel Grid file [12], the
multilayer Grid file [26], the twin Grid file [13], and the BANG (Balanced Anesiéd Grid) file [8].

2.1.2 Spatial access methods (SAMS)

Major techniques for handling non-point or non zero-sized objects can tbgocaed into the
following classes:

(1) Object Mapping/Transformatiohis approach maps the bounding rectangles of objects from a
k-dimensional space into points in a 2k-dimensional space. Alternatihelynultidimensional space
can be linearized using a space-filling curve and is indexed @sipgoasic one-dimensional data
structure for point data. This is the case for the UB-tree [2].

(2) Object Duplication/Clippig: The object clipping method decomposes an object into smaller yet
simpler pieces such that each piece is included entirely in on@amghsThe object identifier is
duplicated in all these subspaces.

(3) Object Boundig: Under this mechanism, the space is partitioned into subspatethatieach
object is included entirely in one subspace.

The Quad tree [17, 23] handles point and non-point objects. It handles non-poitd vigjeabject
clipping or duplication. The R-tree [10] handles point and non-point objeatg @s rectangular
Minimum Bounding RegiofMBR). These MBRs may overlap. The R*-tree [3] is anotheiatian of
the R-tree. The R*tree modifies the insertion and splitting #hgos of the R-tree using various
criteria.

The TV-tree [18] uses the least number of attributes possildlescdminate among objects. More
attributes are introduced gradually to discriminate among objEttsSS-tree [29] is a variation of the
R*-tree that uses spheres as bounding regions instead of rectdBwjlespheres and rectangles are
combined in the SR-tree [16] to define the minimum bounding regions. TireeX5] is a variation of
the R-tree that postpones node splitting by introducing supernodesehatger than the usual block
size. Node splitting occurs if minimum overlap is guaranteed.

2.2. Parallel R-trees

Kamel and Faloutsos propose a parallel architecture for theeR1%6¢ They propose three different
approaches to distribute the data among multiple disks to fexifitad speed up parallel data access.
The first approach distributes the data points ammrysks either in a round robin fashion or by
partitioning the space intd partitions. An independent R-tree is built over each disk. The B-tree
operate in parallel to answer the query. The second approachomseR-tree whose nodes are
‘supernodes’. Each supernode consistd pages that are striped over thdisks. The third approach,
referred to as the MX-R-tree or the multiplexed R-tregif7h single R-tree with each node spanning
one page. The root is kept in main memory while other nodes dribwtisd over different disks.
Nodes are assigned to disks based pnoaimity measure. Nodes that are likely to qualify under the
same query are separated into different disks. This heunst&ases parallelism as both nodes can be
retrieved at the same time. Experimental results show thezistity of the MX-R-tree over the other
approaches.



2.3. The hybrid tree

In the indexing methods discussed in the previous sections, it is noticed that the sipaded into
subspaces. With respect to the way in which the space is divideduhgtpaces, these indexing
methods can be divided inBounding Regior{BR)-based an@&pace Partitioning SP)-based index
structures. A BR-based index structure consistsoahding region$BRs) that are arranged in a spatial
hierarchy. On the other hand, an SP-based index structure consstspaice that is recursively
partitioned into mutually disjoint subspaces.

The Hybrid tree proposed by Chakrabarti and Mehrotra in 1999 [6], combines positive aspects
BR-based data structures and SP-based data structurddyfiie tree chooses a single dimension to
split a node. However, single dimension splits, like those in the krdey) may necessitate costly
cascading splits. Thidybrid treeavoids the cascading splits problem by relaxing the above constraint
i.e., the indexed subspaces may overlap. This is similar to the 8&tdata structures. The overlap is
permitted for the sake of not violating any constraints placed beestbrage utilization. The space
partitioning in aHybrid treeis represented using a k-d tree. The k-d tree is modifiealdas for
overlapping splits by storing two split positions: the firsttgplisition represents the right (or higher)
boundary of the left (or lower side) partition (denoted by Isp arsiee partition) while the second
split position represents the left boundary of the right partitiondigel by rsp or right side partition).
Moreover, the dead space in each node is eliminated by storingtiethdti represent the coordinates
of the live space. These bits help reduce the overhead of empty nodes.

3. ThePN-tree

In this section, we present tRN-tree a new disk-based multidimensional index structure along with
its insertion, node splitting, searching, and deletion algorithms.déteels of how to parallelize and
distribute thePN-treeover multiple disks are presented at the end of this section.

3.1. The basic idea

The basic idea behind tiN-treecan be summarized as follows (refer to Figure 1 for illustration):
* Points are clustered into multidimensional nodes.

» Each node is projected over each dimension.

» Projections over each dimension are indexed separately using one-dimensionsirinttares.
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Figure 1.Points are clustered into nodes then these nadgwejected over each dimension.

First, points are clustered multidimensionally into multidimensiomales so as to cluster nearby
points in the multidimensional space into the same node and conseqaesitiyet them on the same
disk page. Clustering speeds the processing of range queries.

Second, we project the nodes over each of the n-dimensions in an attempt ta diftarent views
of the data space. Then, the nodes that are formed from the prewpuarestprojected over each
dimension. As a result, there will be a set of one-dimensionatvatte over each dimension
representing the node projections.

Finally, projections over each dimension can be considered as a viee rolltidimensional space
that is suitable for indexing. Using these projections, the origipate can be reconstructed to some
extent.

3.2. The index structure

We introduce the following three structures that will cooperate together akdnimarmony to yield
the PN-tree

(1) A set of buckets. Each bucket stores one node that contains a set of points. Thef $iwee
bucket is equal to a disk page size. Each bucket is identified by its disk block number.

(2) A set of one-dimensional index structures. This set of one-dimensional index structures
indexes the projections of nodes over different dimensions. These itrdetures store the line
segments that represent node projections. Building these one-dimensional inctexestiis detailed in
Section 3.7.

(3) A simple multidimensional index structure. This multidimensional index structure stores the
centroids of the nodes. Node centroids are used by the insertionhagtr select the closest node to
the point to be inserted. The overhead involved in the storage of node cerstnoadshigh. This is
because the number of cluster nodes is much less than the number of points.

3.3. The insertion algorithm

The insertion algorithm and its associated node splitting algoatiemesponsible for clustering nearby
points into the same node. Efficient insertion and splitting algositefiminate the need for other
clustering techniques. The insertion algorithm can be summarized as follows:



» Choose the node whose centroid is closest to the point to be inserted.
» Insert the point into the chosen node.
» If an overflow occurs then split the chosen node.

Once a new point arrives, the algorithm picks the node with dsestl centroid to accommodate the
incoming point. The multidimensional index structure that storesidde centroids is probed in this
step. A nearest-neighbor search is performed over this seutupick the nearest centroid. The
nearest-neighbor search is based on the branch-and-bound technique [22]efflo# inf incoming
points into the nodes with the nearest centroids clusters nearby points into the same node.

The pseudo code of the insertion algorithm is given below. We use unatidns to handle the
multidimensional index structure responsible for storing node centrdndseTiour functions will be
used while describing other algorithms throughout the paper.

InsertCentroid (Nodeld N, Point CJhis function stores the centra@lalong with its corresponding
'‘Nodeld'in the multidimensional structure.

UpdateCentroid (Nodeld N, Point OIdC, Point New@)is function updates the centroid of nddle
from 'OldC' to NewC:

DeleteCentroid (Nodeld N, Point CJhis function deletes the centrod of nodeN from the
multidimensional structure.

Nodeld GetNearestNeighbor(Point Fhis function returns the node whose centroid is closdat to

We index node projections over each dimension using one-dimensional ing#ures. We use the
following functions to handle interval projections.

Insertinterval (integer D, Nodeld N, real Start, real Endhis function inserts the projection of
nodeN over dimensiorD. The projection is specified by the one-dimensional interval \Bittrt' and
'End'as its start and end points, respectively.

Deletelnterval (integer D, Nodeld N, real Start, real Enidjis function deletes the interval of node
N whose boundaries afgtart'and End' fromthe one-dimensional index structure built over dimension
numberD'.

Updatelnterval (integer D, Nodeld N, real OldStart, real OldEnd, real Staw, real NewEnd).
This function updates the projections of nadefrom OldStart' and OIdEnd' to NewStart' and
'‘NewEnNd' respectively, in the one-dimensional index structure built over dimension nidhber '

List GetPartialResult(integer D, real Start, real End@his function returns a list of all nodes whose
projection over dimension numbé&' intersects the search range projection over the same dimension.

Algorithm 1: Insertion
Given a point P, it is required to insert P in the structure.
Stepl: N=GetNearestNeighbor(P), [Get the node whose centroid is ctoBgst t
if the structure is empty, create a new node N
Step2: insert P into N
Stepa3: if an overflow occurs then
invokeSplit to split N into N1 and N2
DeleteCentroidN, N.Centroid.
InsertCentroidN1, Centroid(N1))
InsertCentroidN2, Centroid(N2))
stop
Step4: UpdateCentroid (N, N.Centroid, Centroid(N)) [Updates centroid of node N
after insertion]
Step5: for i=1to NumberOfDimensions
begin




if P,<N.min; then Updatelnterval(i, N, N.minN.max, P, N.max)
if P.>N.max then Updatelnterval(i, N, N.minN.max, N.min, R)
end

End

Notes:
N.mini denotes the lower bound of node N along meii'mension.

N.max denotes the upper bound of node N alongt{hdiinension.
N.Centroid denotes the old centroid of node N before it is updated.

Centroid(N) this function computes the new centroid of node N.

3.4. The node-splitting algorithm

The splitting algorithms of multidimensional index structures hewaved over time. Once a node
overflows, it is split into two new nodes. Various criteria haeen used to split overflowing nodes.
For example, the R-tree [10] minimizes the area of boundingrglets. The R*-tree [3] takes into
account the minimization of the area of each rectangle, theapvarhong rectangles, the margin of
each rectangle and the storage utilization constraints. BothSthiee& [29] and the SR-tree [16] try to
minimize the variance among points in each node.
The node-splitting algorithm used by tHgbrid tree[6], which is also used in thHeéN-tree can be
summarized as follows:
» Choose the split dimension (the dimension with the largest extent).
* Choose the split position:
- Select the split position at the middle of the node.
- If storage utilization is violated, shift the split position he tproper direction to satisfy
utilization requirements.

Notice that the following two decisions have to be made when spliimgpde: First, which
dimension to split along. Second, where to split along the chosen dimemtswas proved by
Chakrabarti and Mehrotra that choosing the dimension with thestaegéent as the split dimension
minimizes the increase in tl&pected Disk Acce$EDA). Also, the split position should be chosen at
the middle of the node. The proof is stated in [6]. Storage utdizaequirements may be violated if
we split at the middle of the node. In this case, we try to makeylit as close to the middle of the
node as possible provided that utilization constraints are sdtidfiefew situations, the utilization
constraints may not be satisfied, e.g., if a group of points stamdtraight line that coincides with the
split position. Adding this group to either partition causes the othgtigato be underutilized. These
situations are rare in practice and cause no problem if we &Mwnodes to remain underutilized.
Minimization of theEDA keeps nearby points clustered after node splitting. This meanthe node-
splitting algorithm works side by side with the insertion algorithm to presbevelustering of points.

3.5. The search algorithm

In this section, the search algorithm is presented for rangegu€he range queries are in the form of



a query point and a distandelt is required to find all points within distandefrom the query point.

The search algorithm is summarized as follows (refer to Figure 2 fdralias):

- Project the search range over each dimension.

- For each dimension include the nodes whose projections intersect the search rapgeipn in a
partial result set R

- Intersect the partial result setsl,RR2, ..., Rk to yield the result set R, where is the
dimensionality.

- Retrieve member nodes of R from disk.

As described above, the search range is projected over alhsions. A node belongs to the search
range if its projections over all dimensions intersect theyaaguery projections over the same
dimensions. The search algorithm is described in detail in Algorithm 2.

YL D Search range
= |

X

Figure 2.The search operation.

One problem exists and is illustrated in Figure 3. This problerefesred to as thélse alarm
problem. The projections of a node over all dimensions may intetseqirbjections of the query
range. However, the node itself does not intersect the query aagthe corresponding disk page
records do not belong to the query result. A large number of falsesatiegrade the performance.
Fortunately, these false alarms are not frequent under usual condiadses alarms are considered a
key factor in analyzing the performance of the structure adeseribe in the performance evaluation
section.
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Figure 3.The false alarm problem.

Algorithm 2: RangeQuerySear ch
Given a query point QP and a search range radius R. It is dairetrieve all points that
belong to the specified search range
Stepl: [get partial results from each dimension]
for i=1 to NoOfDimensions
List= GetPartialResult(i, QFR, QR+R)

Step2: [Intersect partial result sets]
d=NoOfDimensions
while d>1 do
begin
for i=1to (d div 2)
List= Intersect(List List; +(d+1) div 2
d= (d+1) div 2
end
Step3: retrieve nodes in Listrom disk

End

3.6. The deletion algorithm

The deletion algorithm is straightforward and is summarized in the folloviepg:s
» Search for the point to be deleted
* If not found then error
else
- Remove the point from the enclosing node
- Adjust the node centroid
- Adjust node projections if necessary
- If the node underflows, then remove the whole node and reinsert its orphaned points

Notice that a node underflows if it contains less than a spepiéextntage of its full capacity.
Experimental results of [3, 29] show that setting this percentag®% gives the best results. This
means that a minimum utilization of 40% is guaranteed. However, a cuydaining 40% of its



maximum capacity is rare. Node utilization is usually much hligheng real data sets. In tR&l-tree
the typical storage utilization is around 75%. The algorithm isritbestin detail in Algorithms 3 and
4.

Algorithm 3: Deletion
Given a point P, it is required to delete this point from the structure
Stepl: N=Search(P) [get the node N containing P]
Step2: remove P from N
Step3: if N.NoOfPoints<m then InvolkemoveNode(N) (Algorithm 4) and stop
Step4: UpdateCentroid(N, N.Centroid, Centroid(N)) [update the centroid of node N]
Step5: [Update the projections of N over all dimensions]
for i=1 to NoOfDimensions
if P,=N.min, then

begin

Calculate LB, the new lower bound of N along teimension
Updatelnterval(i, N, N.min N.max, LB, N.max)

end
else ﬁtN.ma)ﬁ then

begin

Calculate UB, the new upper bound of N alongtMmension
Updatelnterval(i, N, N.mif N.max, N.min, UB)

end
End

Algorithm 4: RemoveNode
Given an underflowing node N, it is required to remove N from thetsire. The remaining
points are reinserted
Stepl: DeleteCentroid (N, N.Centroid) [delete the centroid of node N]
Step2: [remove the projections of node N over all dimensions]
Step3: for i=1 to NoOfDimensions
Deletelnterval(i, N, N.migN.max)

Step4: [reinsert orphaned points]
for i=1 to N.NoOfPoint
Insert(N[i])
End

Modifying the coordinates of a point, sByis performed by deleting then reinserting it after
being modified. This algorithm allows the structure to reorgamzeradistribute the modified points
into nodes.

3.7. Building one-dimensional indexes

The PN-tree uses one-dimensional indexes to store the projections of each nodéh@warious
dimensions. Any one-dimensional index structure that is alreadyogexebnd tested can be used to



accomplish this task. Simply, the required one-dimensional index strgtiowéd support the indexing
of rectilinear line segments, i.e. segments that are pataltae x-axis. Various techniques have been

proposed in the literature to index line segments [14, 23]. In tbi®sethe B-tree is proposed and is
incorporated in our structure. Thé-Bee is chosen because it is a well developed technology that has
come to a level of robustness and maturity over the years. The dfdiee B-tree makes it relatively
easy to incorporate tHeN-treeinto commercial DBMSs.

The projections of data nodes over various dimensions are stored slethabh be used in the
processing of queries. The nodes whose projections intersect tich saage projections over all
dimensions should be retrieved. From Figure 4, for two line segments maersect, the following
condition must hold: E<S, or E;<S;, where § and S, are the start points of the two line segments

and Eand E, are the end points of the two line segments, respectively.cbhidition can be stated as

follows: “for two line segments not to intersect, the first egment must end before the second line
segment begins or the second line segment must end before the first line Seyyiment

We propose to build two Btrees over each dimension: Oné-Bee for the start values of the

projection intervals and the othe Bree for the end values. The Bree consists of two parts: the
index part and the sequence set. The index part is used to speed sgarttte process while the
sequence set is used for sequential processing of the stored data.

The B'-tree that stores the start values of the intervals istesdifor the first value that is greater
than the end value of the search range projection. Then, the sege¢nsdraced to exclude all the

intervals that follow. Analogous steps are performed on the othéred that stores the end values of
the intervals. The first value that is less than the start wdltiee search range projection is reached. It

is noted here that the Bree that stores the start values of the intervals has anseqset that is sorted
in an ascending order. On the other hand, there that stores the end values of the intervals has a

sequence set that is sorted in a descending order. By followin@vm8+-trees, the intervals that
begin after the end of the search range projection and thosenithdtefore the search range interval
starts are removed. The remaining intervals are those that intersezaitie nge projection.

2 K2 52 E2

S1 F1 81 E1

E2=S1 E1=82

Figure 4.The condition for two line segments not to intetse

3.8. Parallelizing the proposed structure

One of the major advantages of the propd3Netreeis that it is parallel by nature. It consists of a set
of one-dimensional indexes built over the various dimensions. Each dimessiadexed separately
using its own one-dimensional structure. Thus, the processing BNHeeecan be distributed among
many processors. Each processor deals with one of the dimensiansnddms that thEN-treecan
take advantage of as many processors as the dimensionalitysplaitee This does not mean that it is
an obligation to use as many processors as the dimensionalityx&ple, if there are n-dimensions
and n/2 processors, then each processor will be responsible for indexing two dimensions



The indexing process can be enhanced and parallelism can beeddfghs records that belong to
the query result are retrieved in parallel. This can be aethigvthe data is declustered over multiple
disks. The problem of distributing the data over multiple disks is discussed in thelmsedtson.

3.9. Declustering the index over multiple disks

The declustering method used here, termedtbrimity index (Pl)was first suggested by Faloutsos
and Kamel in the context of the MX-R-tree [7]. TReoximity Index(‘PI') assigns the new nodes
resulting from the splitting of an overflowing node to the disk whih ‘least similar’ nodes (i.e., least
likely to qualify in the same range query). The formulas to comieteroximity index of a node N

to a disk that contains a set of rectanglgs N.., N, is based on theroximity measwe: This measure

compares two rectangles and assesses the probability thatilhey retrieved by the same query. The
proximity indexof a new node o, and a disk D (that contains the sibling nodgs N....., N) is the

proximity of the most ‘proximal’ node to N

4. Experimental Results

In Section 4.1, various comparison parameters that affect thermparice of multidimensional
structures are stated. Then, the effect of each parametestésl and is detailed in the subsequent
sections. Data sets are synthetically composed in a multidioreal space such that the point
coordinate values over each dimension range from zero to one. The pomtdinate values are
approximated to six decimal digits. The setting of each experiment ikedetaits own section.

4.1. Comparison parameters

The basic parameters that are involved in shaping the performance cursemararized as follows:

1- The page size. The size of the disk page affects the perfoe&index structures. This effect is
detailed in Section 4.2. As the page size increases, more poinie Gaved in the same disk page.
This reduces the number of nodes or equivalently the number of disk pagesesult, the height of
the tree for hierarchical structures is reduced. This deeneatree height reduces the number of disk
accesses. However, in tR&-tree other factors play an important role in increasing or decrgalse
disk access.

2- The dimensionality. The number of dimensions in the space is an ampdactor when
evaluating the performance of index structures. Many indextstascdo not perform well as the
dimensionality increases. The performance of our structure uneeratiation in dimensionalities is
described in Section 4.3.

3- The number of processors. The number of processors cooperating thmdexat is a factor that
affects the performance. This issue is addressed in Section 4.4.

4- The number of inserted points. Finally, the performance oPiwreeis tested under various
numbers of inserted points. This performance study is described in Section 4.5.

All tests are run on a Pentium II, 233 MHz, IBM machine with 64 RIBM. All programs are
written in C++ and run under Red Hat Linux Release 6.2.



4.2. The effect of the page size

A simulation experiment over 100,000 uniformly distributed points in a 16rdiimeal space is
carried out. The size of the disk page is varied and the perfoentdrihePN-treeis evaluated under
various page sizes. The experiment is conducted for both the seritileapdrallel cases of tHeN-
tree The experiment is carried out for both a 5% and a 10% searctsraegea search range with a
radius that is equal to either 5% or 10% of the whole space. $aksrare illustrated in Figures 5 and
6 for the serial and parallel cases, respectively.

The effect of the disk page is controlled by two factors. Fassthe size of the disk page increases,
nodes with larger sizes are obtained. The overlap among such nodesaacspecially for higher
dimensionalities. Such overlap deteriorates the performance. Secotitt age of the disk page
decreases, a large number of nodes are obtained. Such a large nunmuoete®frequire one-
dimensional indexes with many tree levels. The increase enheeght results in an increase in the
number of disk accesses.

The effect of these two factors is depicted in Figuraad6. Figure 5 illustrates the performance of
the serial case whereas Figure 6 illustrates the pacalde where maximum parallelism is assumed,
i.e., the number of processors is equal to the number of dimensions. tlaties the size of the disk
page decreases, the performance improves. This trend continagsaijjé size of 1KB is reached. For
disk pages smaller than 1KB, a large number of nodes emerges, ardhi®one-dimensional index
structures increase in height and the performance deteriorates.

A page size of 1KB is considered the best choice forPtReree This is why the experiments
shown in Figures 5 and 6 are repeated with a focus into the intextvaben zero and two KB disk
pages. The results are illustrated in Figures 7 and 8.
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4.3. The effect of dimensionality

The performance of many index structures deteriorates asdithensionality increases. This
phenomenon is known as tldgmensionality cursg¢28]. This happens because the overlap among
nodes increases in higher dimensionalities. This increased ovHdeis adversely the performance of
multidimensional structures. For hierarchical structures, maawglsgaths will be active at the same
time. This is because, most likely, the search range intersects malappwey parent nodes.

In the PN-tree the performance behavior with the dimensionality is completélgreint. Before
discussing the performance of both the serial and the paraled chshePN-tree it is important to
note that the performance is affected by two factors: (1lisleaccesses involved in processing the
one-dimensional index structures built over each dimension (2) the dis&sas involved in retrieving
from disk the records that result from the intersection of partial resul\satshe various dimensions.

The second factor is divided subsequently into the disk accesses invohetdeving records that
belong to the query result, and the disk accesses involved in fatsesalA disk page that is retrieved
from disk and that contains no points that belong to the query result is considered arfaise al

False alarms occur because the projections of a node over akdihdemensions may intersect the
projections of the search range over the same dimensions, whiledkdtself does not intersect the
guery range. Refer to Figure 3 for illustration.

The overhead involved in processing the one-dimensional index structuresoveilteach
dimension increases as the dimensionality increases. Howeveugrttieer of disk accesses involved in
false alarms decreases with the increase in the dimensyoridlis can be explained by considering
each new dimension as if it were a new piece of information aheumultidimensional space. For
each new dimension, a new index is built over this dimension and nformation is stored about the
space. This increased amount of information results in a reducecenomilisk accesses involved in
false alarms.



Figure 9 illustrates the performance of our structure in both the serial apdr#tiel cases for range
gueries with a radius equal to 5% of the whole space. Figure 10 thegserformance for range
gueries with a radius equal to 10% of the whole space. The gstfasmed over 100,000 uniformly
distributed points with various dimensionalities. In the parallel,dhgenumber of processors is equal
to the dimensionality of the space.

Notice that, for the serial case, the performance improvebkeaslitnensionality increases. This
performance improvement saturates as the increase in the dinaitg continues. From Figures 9
and 10, the performance of range queries with 10% radius satucates #lan that of queries with 5%
radius. This is because as the search range increases, more falsea@arms o

For the parallel case, the performance is stable with thendiorality. This is because the increase
in the number of disk accesses involved in processing the one-dimenmsammads is circumvented by
increasing the number of processors. From the previous analystgnekide that the propos@&iN-
treedoes not lose its efficiency for high dimensional spaces.
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Figure 9.The dimensionality effect for a 5% search range.
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4.4. The effect of the number of parallel processors

As described in Section 3.8, tlRN-treecan be processed using multiple parallel processors. In this
section, we study the effect of increasing the number of prarsesa the performance of tiN-tree
We perform the experiment using 100,000 uniformly distributed points in anigadional space. The
number of parallel processors varies from one to 16.

ThePN-treecan take advantage of as many processors as the dimensioinddéyspace. The result
of the experiment is given in Figure 11.



From Figure 11, notice that the number of disk accesses desraa the number of processors
increases. However, the rate of decrease is not constantudateatas the number of processors
increases. This saturation occurs because most of the featihesspiace get captured using the first
dimensions. This implies that it is not necessary to use ag pnacessors as the dimensionality of the
space. A good performance can be obtained with a much less numberesfsprec As can be seen
from the figure, the difference in the number of disk accesstsebn ten processors and sixteen
processors is insignificant.
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Figure 11.The effect of the number of parallel processors.

N
=]

Disk access

Y
@

a
(LY

=

4.5. The effect of the number of inserted points

In this section, we study the performance of BM-tree for various data sizes. We use a 16-
dimensional space and vary the number of points from 10,000 to 200,000 pomiscrgiments of
10,000 points. The experiment is conducted for a 5% and a 10% search Taegesults are given in
Figures 12 and 13, respectively.

60
50

40 //’/‘
30 ///

20

Disk access

Number of points .
—— serial case
—— parallel case
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5. Comparative Study

In this section, the performance of tR&l-treeis compared to thélybrid tree The Hybrid treeis
selected because of its superiority over other index structjreEHe two index structures have some
commonalities. The node-splitting algorithm of tAB-treeis the same as the one for splitting data
nodes in theHybrid tree Both structures select the split dimension as the one with rigpestaextent.
Also, both structures select the split position so that the nodeitisnspltwo halves along the split
dimension provided that no utilization constraints are violated. Both @tegctry to minimize the
increase in the expected disk access (EDA) as described in Section 3.

We test the performance of the two index structures using rizasels. The real data sets consist of
16-d vectors generated by extracting color histograms fronCdinel database of images. These data
sets have also been used by Chakrabarti and Mehrotra [6] while testirdytied tree

The experiment is carried out for circular range queriels vatious radii. Figure 14 gives the result
for a radius that is equal to 5% of the whole space. It is ndtiaggarallel processing of thN-tree
improves the performance significantly. Moreover, the performarfcthe PN-tree using parallel
processing scales very well with the increase in the number of inserted points.

It can be seen from Figure 14 that serial processing oPMwree outperforms thedybrid tree
when the number of points exceeds 150,000 points. This is becauBdl-inee has some overhead
involved in the processing of the one-dimensional indexes of each dimermi@xample, if there are
16 dimensions and two disk accesses are needed to process eachemsgdahindex structure, then
there will be an overhead of 32 disk accesses involved in procedsimdexes. This overhead is not
justifiable unless a large number of points is inserted.

Figure 15 gives similar results for range queries with ausathat is equal to 10% of the whole
space. Notice that the serial processing ofRtNetreeoutperforms thédybrid treeafter 70,000 points
are inserted. This means that #i&-treeperforms better under large search ranges. The reason is that
as the radius of the search range increases, upon processiegjuangs, many search paths will be
active at the same time in théybrid tree This behavior degrades the search performance from
logarithmic to linear.

In conclusion, th&®N-treeimproves the performance significantly with parallel procesanydoes
not lose its efficiency with serial processing. In the $edaae, thé°N-treeoutperforms thélybrid tree
for a large number of points and for large radii of search ranges.
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6. Conclusions

A new efficient index structure for multidimensional spaces ha l@esented. The new index
structure is parallel and distributed in nature and can make uses ohany processors as the
dimensionality of the space. Moreover, Bie-treedoes not lose its efficiency if it is serially processed
over one processor.

The PN-treeclusters points multidimensionally into nodes by using simple ingseand splitting
techniques. The projections of these nodes over each dimension aredbéeedi using any one-
dimensional index structures.

The PN-tree scales with both the number of dimensions and the number of inserted. point
Moreover, thePN-treecan be tuned to use parallel processors to compromise betwesrstlaad the
run-time speed of the query.

According to simulation results, tHeN-tree outperforms already existing techniques for a large
number of points and for large search ranges. In summary,Nkeeeis an efficient index structure
for both serial and parallel indexing of multidimensional data sets.
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