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Abstract

The goal of an Hippocratic DBMS is to preserve the
privacy of data without much sacrificing performance.
In this paper, we address problem of developing privacy-
preserving systems into the more challenging context of
data streams. We contrast data streams to traditional
databases and identify the new challenges posed by data
streams. We discuss examples of streaming applications
in which privacy and security issues are crucial. We pro-
pose a wvisionary architectural design of how a Hippo-
cratic Data Stream Management System (HDSMS) may
look like. We identify several open research directions
where privacy preserving issues meet the data streaming
paradigm.

1. Introduction

Recent advances in pervasive computing and sen-
sor networks combined with techniques for stream data
processing [1, 13, 16, 23, 25] have made possible not
only acquiring and processing large amount of data
from our environment, but also extracting relevant in-
formation and knowledge from such data. We can ex-
pect unprecedent innovative applications arising from
the massive deployment of such technology in large va-
riety of domains, such as urban planning, environmen-
tal protection, homeland security, health care, enter-
tainment, education [19, 28, 29]. Enabling such a vi-
sion requires however addressing increasing privacy and
confidentiality requirements in that very often stream
data convey information related to individuals or in-
formation that are critical to organizations. Though
stream data management systems have been exten-
sively investigated by the research community, the fo-
cus has been on topics such as query processing[16, 25]
and watermarking [27]. Issues related to privacy and
confidentiality, and security more in general, have yet
to be even understood.

In this paper we aim at developing a first definition
of the privacy problem and to establish the main princi-
ples underlying the development of privacy-preserving
techniques for stream data management systems. By
refer to such systems as Hippocratic data stream man-
agement systems (HDSMS), by borrowing the term
firstly introduced by Agrawal et al. [4], to emphasize
the responsibility, in part imposed by existing laws
and regulations, of protecting the privacy of the user’s
data. As part of their initial work, Agrawal and al.
defined some principles that should guide the devel-
opment of an Hippocratic Database Management Sys-
tem (DBMS). However, such principles were referred to
conventional DBMS. We believe that stream data man-
agement systems are more crucial to privacy and have
challenges that go beyong the challenges identified in
the context of conventional DBMS.

1.1. Key Differences between databases
and data streams

The most fundamental difference between tradi-
tional databases and data streams is that the latter
are unbounded sequences of data continuously arriv-
ing according to a specific data rate. Such a difference
impacts many features and components of DBMS ar-
chitectures, such as the types of query that are sup-
ported and execution strategies for such queries. Here
we elaborate in more details on such differences:

1. Query types. In conventional DBMS queries are
snap-shot queries that retrieve data from a con-
sistent state of the database at a specific time. By
contrast, queries applied to data streams are usu-
ally continuous queries [10]. Continuous queries
keep running as long as they are registered in the
system to consider the newly-incoming data. Con-
tinuous queries make use of the notion of sliding
windows [22]. A sliding window limits the query to
the most recent portion of the stream that is long
w time units.



2. Access methods. In conventional DBMS, the
database records are usually accessed randomly
with no notion of data order. In data streams,
we usually cannot afford more than one sequen-
tial pass over the data stream. Moreover, once a
data item passes, the system either explicitly pro-
cesses this data or it loses it for ever.

3. Incremental processing. Conventional DBMS ac-
cept the user’s query, process the query over the
current snapshot of the data, and terminate the
process once the result is returned to the user.
In the case of data streams, the system streams
the output as well it streams the input. A newly-
incoming data item triggers the execution of the
query plan operators to incrementally add the ef-
fect of this data item to the query answer. Blocking
operators, e.g., join, group-by, and aggregates, are
approximated with non-blocking operators that
are incrementally evaluated to obtain approxi-
mate, but early, results.

4. Approximate answers. Conventional DBMS usu-
ally return exact answers to queries or answers
with high accuracy. However, when dealing with
data streams, some level of approximation can
be acceptable in order to deal with the limited
CPU time in front of the high arrival rates of data
streams and to make up for the bounded memory
resources in front of the infiniteness of the data
stream.

1.2. Challenges

The differences we have outlined in the previous sub-
section introduce important challenges for the devel-
opment of Hippocratic DBMS for stream data. The
data streaming environment is a highly-demanding en-
vironment where continuous queries are executed over
stream data that are usually generated at high rates.
Continuous query processing requires highly efficient
query processors to avoid loosing much of the input
data. The limited CPU time is shared among the out-
standing continuous queries to process data as they
evolve. The enforcement of security and privacy mea-
sures may trigger heavy-weight processes that may
heavily affect performance. As a result, security and
privacy mechanisms should be optimized for speed and
should be tuned to work in a single sequential pass over
the streamed data.

To be suitable for data streams, security and pri-
vacy mechanisms should be able to process the stream
data incrementally. A stream system continuously re-
ceives new data and expires old data that are not longer

of interest to any query. Security and privacy mecha-
nisms should take into consideration the effect of new
data and, meanwhile, should fade the effect of expiring
data. Moreover, security and privacy-preserving mech-
anisms should be able to run on top of approximate
or incomplete data instead of the exact data to make
up for any data loss. In case of approximate or incom-
plete data, approximations should not be skewed in a
way that reveals the sensitive components of individ-
ual records.

The voluminous data that is streamed in and
streamed out increases the system’s vulnerability to se-
curity attacks. For example, the higher the number is
of data encrypted with the same key, the easier it is to
compromise that key. Security mechanisms should aim
at releasing no sensitive information even after long pe-
riods of operation.

1.3. Contributions

In this paper we address the problem of privacy-
preserving data management techniques for stream
data. Such problem, already challenging for conven-
tional database systems, is much more difficult in a
context characterized by huge amounts of fast arriv-
ing data and by strong performance requirements. The
major contributions of this paper can be summarized
as follows:

1. We shift the problem of privacy assurance from
conventional databases to the more challenging
paradigm of data streams.

2. We revisit and substantially extend the pri-
vacy principles, initially devised for conventional
databases, in the context of stream data. In par-
ticular, we introduce two more principles that are
stream-specific.

3. We identify the major challenges that are to be
addressed in the design of an Hippocratic data
stream management systems.

4. We develop an architectural design of a Hippo-
cratic data stream management system (HDSMS)
that addresses those challenges and can be used as
a reference framework for research in the area of
security and privacy techniques for stream data.

The remainder of this paper is organized as fol-
lows: Section 2 presents twelve principles represent-
ing the main requirements that should guide the de-
velopment of privacy-preserving management systems
for stream data. Section 3 emphasizes the principles of
Hippocratic data streams through some example appli-
cations. Section 4 discusses the challenges that must be
addressed in the development of an HDSMS. Section 5



presents our design of a data stream management sys-
tem that complies with the principles of Hippocratic
data streams. Section 6 overviews related work. Fi-
nally, Section 7 concludes the paper and gives some
guidelines future research.

2. Principles of Hippocratic Stream
Data Management Systems

In this section, we present twelve principles that
guide the behavior of Hippocratic stream data man-
agement. The first ten principles were initially pro-
posed for conventional database systems, and we re-
visit them here in the context of stream data. The last
two are novel and have been devised specifically for
stream data.

1. Purpose Specification. This principle states that
the purpose for which the data is collected needs
to be collected and associated with the data it-
self. In data streams, the purpose of data collec-
tion may change over time. At the extreme, the
purpose of the data is streamed continuously into
the system with the streaming of the data.

2. Consent. This principle guarantees that the pur-
pose for which the data is collected has the consent
of the user. As in conventional database systems,
a data stream management system must maintain
the consent of the user over the lifetime of the
stream.

3. Limited Collection. Data collection should be lim-
ited to the minimum amount of data that satis-
fies the user’s specified purposes. There are sev-
eral challenges one has to address in order to
limit the data collection in a data stream manage-
ment system. For example, streams with no asso-
ciated queries should not streamed into the sys-
tem at all; stream data items that are of no inter-
est to any query are filtered at the system’s input
buffers. Additionally, since the streaming environ-
ment is dynamic, i.e., existing queries expire and
new queries arrive, rules and filters that the sys-
tem uses to limit the data collection change dy-
namically.

4. Limited Use. This principle ensures that the data is
used by queries that do not violate the purposes of
the collected data. In a data stream management
system, at the time of query registration, admis-
sion control policies are applied to accept or to re-
ject the query. More flexibly, if the admission con-
trol detects that a query will violate the purpose
of the data, then the admission control can nego-

10.

. Openness.

tiate the query demands with the query’s owner
instead of rejecting it.

. Limited Disclosure. The system is not allowed to

release any information to a third party that is
outside the system without the owner’s approval.
In data streams, limited disclosure has the same
meaning as in conventional databases with one ad-
ditional challenge. A minimum quality of the re-
leased data should be included in the owner’s con-
sent, and when the system releases data to a third
party, the minimum data quality has to be en-
sured. Otherwise, the third party may not get a
true image of the stream.

. Limited Retention. Limited retention necessitates

the immediate deletion of the user’s data once the
associated purpose is fulfilled. To map the same
concept to data streams, the user’s data should not
be maintained beyond the largest time-window of
any query that accesses the stream.

. Accuracy. The accuracy of a database system

means how accurate and up-to-date the informa-
tion stored in the database is. For data streams,
accuracy has two interpretations: (a) the accuracy
of the approximate version of the stream inside
the system and (b) the query output delay, which
is measured by the time required for a data item
to appear in the output (i.e., to bring the output
up-to-date).

. Safety. Saftey entails the adoption the security

measures protecting sensitive data from various
types of attack. The challenge in data streams
is represented by the huge amount of data that
needs to be secured. Moreover, security mecha-
nisms should consider the scarcity of resources
in the streaming environment by avoiding CPU-
intensive operations.

Openness allows the individual to
whom the data are related to access all infor-
mation about himself stored in the database. In
data stream systems, openness is very difficult to
achieve because of the continuous change in the
stream data due to the arrival and the expiration
of data. A stream owner should be able to retrieve
the data that are actually streamed inside the sys-
tem and to compare these data with its original
data. Then, the stream owner can decide how sat-
isfactory the system’s sampling rate is.

Compliance. As for conventional databases, com-
pliance means making sure that interested sub-
jects, for example data owners, be able to verify
that the system complies with the privacy princi-
ples. At any time instant, the stream owner should



be able to track the query answers that are based
on his own stream to check that his privacy re-
quirements are met. Verifying the compliance of
a data stream management system is a hard task
given the huge amount of output data that are
streamed out of the system over time.

11. Faithful Representation. Because of the scarcity of
system resources, the query processor may not be
able to catch up with the stream arrival rates.
Consequently, some data may drop from the in-
put buffers. A Hippocratic data stream manage-
ment system guarantees that the processed data
are a faithful representative subset of the origi-
nal stream data. Data dropping should (a) treat
all streams fairly and (b) result in a uniform ran-
dom sample of the original streams. No specific
streams or stream values should be repeatedly ig-
nored either accidentally or intentionally.

12. Minimum QoS. A Hippocratic data stream man-
agement system should guarantee a minimum
Quality of Service (QoS) per registered query. This
principle assures that the security and the privacy
mechanisms do not overload the system resources.
Adoption of this principle also prevents denial of
service attacks where the system accepts a huge
number of queries that are beyond the system’s
processing capabilities. According to this princi-
ple, a query is not accepted unless the system can
secure enough resources for the processing of this

query.

3. Applications of Hippocratic Data

Streams

Almost every data streaming application has some
relevant privacy and security requirements. However,
some applications are particularly challenghing be-
cause privacy requirements are dynamic and are
streamed to the system with the streaming of the data
itself. Here we briefly discuss three such applications
and identify the main challenges they pose.

3.1. Streams of Video Frames

A video clip is a stream of video frames that are dis-
played in a timely fashion. Users are allowed to view
video clips based on some access permissions. The sim-
plest case is either to grant or to reject the user’s re-
quest to view the entire video clip. Alternatively, the
user is authorized to view a subset of the video frames
and is prohibited from viewing other frames that have
higher levels of confidentiality. These two cases can be
handled efficiently through traditional access control

policies that operate on the frame level as its basic
granularity.

Our application scenario assumes that every user is
allowed to view the entire video clip after blurring some
portions of the video frames that contain confidential
information, e.g., faces of the people. In this case, the
trajectories of the moving faces that have special ac-
cess control policies are streamed to the system with
the streaming of the video frames. Then, access control
mechanisms are applied online to blur specific portions
of each video frame based on the user’s access permis-
sion.

3.2. Streams of Spatiotemporal Data

Assume that a data stream management system
(DSMS) receives a stream of spatiotemporal readings
that represent the locations of moving vehicles at spe-
cific time instants. Based on a continuous query, the
DSMS feeds each vehicle with information about its
nearest service stations, e.g., gas stations, restaurants,
and hospitals. Also, the DSMS may release a vehicle’s
information to its nearest service stations for the sake
of advertisements provided that the system gets the
vehicle’s consent. The DSMS can bargain on behalf of
the vehicle’s owner with the service stations for a bet-
ter service with less cost.

In the above scenario, the system maintains informa-
tion about the users’ vehicles and the service stations.
The system authorizes only close-by stations to adver-
tise themselves to a vehicle and hides the vehicle’s in-
formation from other stations to avoid that the vehicle
be spammed. Each user specifies what type of informa-
tion about himself can be released, e.g., location, name,
and preferences. The user also tells his notion of dis-
tance, i.e., how near the nearest service stations should
be. Service stations have the notion of confidentiality
as well. The prices of each station may be kept confi-
dential to allow the system exclusively to bargain for a
better rate. Also, a service station may require its in-
formation to be released only to specific types of ve-
hicles or to vehicles with specific preferences. Finally,
it is the system’s responsibility to match the require-
ments of both the vehicle and the station.

3.3. Streams of Retail Transactions

The online processing of retail transactions is a rich
area with respect to which to explore the functional-
ities of an HDSMS. A retail transaction contains in-
formation about the sold items, their quantities, their
prices, the customer information, and the method of
payment. Various entities are entitled to view differ-
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Figure 1. Shared execution of queries over the
same data stream.

ent pieces of information. For example, a cashier is not
allowed to view any information once a transaction is
complete. A store’s manager should access only the in-
formation of his local store. The management of the
retail store series has the authority to view the infor-
mation of all stores and, moreover, to grant access to
individuals. A third party may be responsible for pro-
cessing the customer’s payment. Research centers are
authorized to access a view that is defined over the
data for analysis purposes only. A customer should be
able to specify his confidentiality requirements, for how
long to keep his own data, and whether or not to use
his data in analysis and advertisement purposes.

In the above scenario, many entities interact to com-
plete a single transaction. An HDSMS has the responsi-
bility of enforcing all the security and the privacy rules
of each entity. An HDSMS is globally trusted and is be-
lieved to protect the rights of retail stores, customers
and other parties that are involved in the transactions.

4. Challenges

Hippocratic data stream systems pose several chal-
lenging problems. Here we elaborate on these chal-
lenges, outline possible approaches and identify open
research directions.

4.1. Shared Execution

In a data stream system, a user may execute a query
that accesses multiple streams; also multiple users may

execute queries that access the same stream. Each user
has certain authorizations and restrictions over each
stream. One of the main challenges in this respect is
how to enforce authorizations without degrading the
system’s performance. For example, the authorizations
that are common among the current users should be ap-
plied once instead of applying them to each user sepa-
rately. One possible solution is that the stream owner
creates a view for each user that determines the ac-
cess permissions of the user’s queries. In the create view
statement, the stream owner specifies the following pa-
rameters:

1. A set of attributes. This set of attributes restricts
the scope of the user’s queries.

2. A minimum sampling rate. The stream owner
grants the user a minimum sampling rate to en-
sure that the user’s queries capture the minimum
required behavior of the stream that is necessary
for these queries.

3. A maximum sampling rate. The stream owner re-
stricts the amount of information that a query can
see through a maximum sampling rate.

4. A maximum size of a sliding window. This param-
eter limits how far a query can go in the past. The
query must operate over a window that is of equal
or less size.

5. A set of filters. The stream owner has the author-
ity to apply a specific filter over his data before
it is fed to a query. For example, a retail store
may prevent certain queries from accessing trans-
actions with special items or with prices over a
certain amount.

Figure 1a illustrates a naive approach under which
the input stream is pushed into the system’s input
buffer and then the output from the buffer fans out to
each query based on its access permissions. The buffer
manager feeds each query @; with stream readings over
the most recent time-window w according to its speci-
fied minimum and maximum sampling rates and win-
dow W;. Stream tuples are projected to eliminate any
unauthorized attributes and are filtered out to limit
the access to authorized values only. This approach suf-
fers from duplication in the input buffers of outstand-
ing queries where a single tuple is fed to many queries.
If no security and privacy techniques are in place, the
system would use a single input buffer per stream that
feeds all queries with input tuples. The major challenge
here is to avoid the duplication overhead in the query
input buffers that arises because of security and pri-
vacy.



Figure 1(b) illustrates the case where one shared
buffer is used for all queries. The shared input buffer
should include all the attributes that are accessed by all
queries and should be long enough to satisfy the max-
imum window size, i.e., max(Wy, Wa, ---, W,,), with
the highest required sample rate. The key issue is to
avoid the materialization of the view of each query and
to use one global view that is shared among all queries.

4.2. Dynamic Change of Security and Pri-
vacy Preferences

The security and privacy preferences can be
streamed with the streaming of the data to indicate
the privacy preferences of the current portion of the
stream. Recall the example of video streams in Sec-
tion 3.1 where the trajectory of the objects that needs
protection is streamed with the streaming of the video
frames. The dynamic and continuous change in security
and privacy preferences places two major challenges:

1. Synchronization between the stream tuples and their
associated preferences. A lag between the stream
tuples and their preferences can undermine data
privacy. Imagine the problem of blurring a por-
tion of the video frame after the object that is re-
quired to be protected is already displayed. The
lag between the stream tuples and associated pref-
erence may occur due to network delays between
the stream source and the system.

2. Dynamic query optimization. Certain optimiza-
tions take place to tune the query performance
based on the security and privacy preferences. A
change in these preferences triggers a change in the
query plans that are executed over the stream. The
online optimization of queries should make sure to
avoid wasting the systems resources at run-time.
Some work has been conducted to reorganize the
operators dynamically in the context of the Tele-
graph project based on the concept of Eddies [7].

4.3. Stream Ciphers

Stream ciphers, e.g., [20] are used to encrypt and
decrypt stream data. The huge amount of data that is
conveyed in a data stream requires careful key manage-
ment. The longer the data sequence that is encrypted
with the same encryption key, the easier it is to com-
promise that key. The key should be changed frequently
or generated using a pseudo random generator that ap-
proximates the one-time-pad technique.

Key synchronization is another challenge in stream
ciphers. The streaming environment is lossy by nature
and, hence, stream tuples drop from input buffers if no

sufficient resources are allocated for these tuples. En-
cryption techniques should take into consideration pos-
sible loss of data that may desynchronize the decryp-
tion key from the stream cipher. Some work has been
initiated in [5] to develop slef-synchronizing stream ci-
phers that tolerate possible data loss.

Stream ciphers should be tuned to provide fast
encryption and decryption operations while avoiding
CPU-intensive operations. The objective of stream ci-
phers is to secure streams without competing with
other system’s functionalities for system resources. The
system’s total throughput should be minimally affected
by the encryption and decryption processes.

4.4. Compliance

An important mechanism supporting proof of pri-
vacy compliance by the system is represented by logs
of audit trails. Such logs are generated by the DBMS
upon each data access and give users the ability to
track all the operations that have touched their data.
Users can investigate the audit trails at any time to ver-
ify the compliance of the system to their privacy pref-
erences. One possible solution to achieve compliance
and to monitor users’ queries is to generate, for ev-
ery user, log entries on the form: (Query, Item, ts, - - ).
Such a log entry records the query issued by the user,
the item(s) accessed by the query, and the timestamp
at which the query took place. Notice that the item can
refer to various granularities of data, e.g., attribute, tu-
ple, or table. Other information can be added to record
the purpose of the query and a reference to the user’s
consent.

In data stream systems, audit trails are extremely
huge. Therefore, storing the infinite data composing
the original stream is not feasible. As a result, logging
the answer to multiple queries over data streams would
be impossible. An alternative solution is to store audit
trails at coarser granularities. In contrast to recording a
data item and the timestamp at which the item is ac-
cessed, a lazy approach can be adopted according to
which the log records a stream range and the period of
time (tSstart, tSend) Over which the stream range is ac-
cessed. This approach reduces the accuracy of the audit
trails but addresses the problem of the limited mem-
ory space. The audit trails can be enhanced with ex-
tra summaries to sketch the result that is returned to
the query over the associated range of the stream. The
log entries that are generated have the form: (Query,
strem-range, tSstart, tSend, Summaries, - - )

Another challenge in the data streaming environ-
ment is to produce the audit trails online without
significantly degrading the performance of continuous
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queries. The coarser the granularity over which the
query answer is logged, the less load is placed over the
system.

4.5. Limited Collection

Limiting the data that is streamed into the system
to the minimum possible has two main advantages: (1)
it decreases the processing load of the system and (2) it
supports compliance to the minimum collection princi-
ple. Simply, if a stream has no associated query, it re-
mains inactive and is not streamed into the system.
Once a query is registered at the system, all its in-
active target streams are initialized and are streamed
into the system. A warm-up period that is equal to the
length of the query’s sliding window is required to fill
up the query’s input buffers. Similarly, any attributes
in the stream that are of no interest to any query are
not streamed into the system.

In contrast to the above stream-level or attribute-
level data collection, the tuple-level data collection is
more challenging. The system should be able to de-
cide whether a single stream tuple is of interest to any
outstanding query. A global filter is pushed at the sys-
tem’s input buffer to take out, as early as possible, any
stream tuples that do not satisfy the selection predi-
cates of all outstanding queries. Figure 2 illustrates the
case where a global filter for three queries is pushed to
the input buffer level to take out tuples that are of no
interest to the three queries. Pushing filters to the in-
put buffers requires the buffer manager to be equipped
with additional processing capabilities.

4.6. Limited Retention

The principle of limited retention in traditional
databases is relatively straightforward compared to
data stream systems. In traditional databases, once a
data item fulfills its associated purpose, it is deleted
from the database and from the logs as well. Conse-
quently, the data item is no longer visible to any query.

In data stream systems, data are not persistent.
They can be in the system’s input buffers, the queries’

input buffers, or queued in one or more query plan op-
erators. Moreover, the effect of stream data is reflected
in the maintained summaries over the stream. To com-
ply with limited retention principle the HDSMS has to
ensure the following:

e Queries window size: Continuous queries usually
restrict their interest to a certain window over the
stream. The retention time for a stream has to be
larger than the query window size. If the query
window size is larger than the stream retention
time, then the admission control component has
to either reject the query or negotiate with the
query’s owner to reduce the window size.

e Fading summaries: Streams may have summaries
built on top of them. With the retention time prin-
ciple, the time dimension has to be considered
while building the summaries such that the effect
of the tuples should fade over time until the ef-
fect disappears after the specified retention time.

e Dynamic limited retention: Streams are continuous
and the retention period may change over time.
The system should provide a mechanism to read-
just the existing data based on the new retention
period.

4.7. Limited Disclosure

A stream owner has the right to instruct the data
stream system to release its data to a third party to
obtain a specific service. For example, a moving vehi-
cle requests the system to release its information to the
nearest service station or a retail store requests a re-
lease of its information to a research center. In the con-
text of data streams, we identify the following two ba-
sic challenges:

1. Faithful disclosure. If the system is to disclose the
user’s information, it should disclose them cor-
rectly. Imagine an overloaded data stream system
that releases the information of a retail store to
a research center with low sampling rate. Missing
tuples in the released stream can negatively af-
fect the provided service. The system should be
able to commit to release a good-quality image of
the user’s data to the intended third party.

2. Timed-out disclosure. The system should be able
to accept timed-out requests from the user to re-
lease his information. For example, a moving ve-
hicle allows the system to release its information
to the nearest neighbor. As the vehicle moves, its
nearest neighbor changes. The system should be
eager to time out the disclosure request once the



service station is not recognized as the vehicle’s
nearest neighbor.

4.8. Quality of Service

Traditional databases provide exact and accurate
answers. On the other hand, data streams are tuned
for approximate answers to alleviate the bursty na-
ture of data streams that usually arrive in high rates.
The quality of service (QoS) principle assess “how ap-
proximate are approximate answers?” and places min-
imum guarantees over the quality of service measures.
Moreover, the system is required to notify the query
owner whenever the QoS measures are violated. Var-
ious (QoS) measures can be in effect. Some of these
measures are summarized as follows:

1. Maximization of the number of output tuples. A
query processor returns a subset of the query’s ex-
act answer. The larger the returned subset, the
less output tuples are lost and the more accurate
the result is.

2. Uniformity of the output. A query processor aims
at providing a subset of the answer that approxi-
mates a uniform sample of the exact answer. The
returned subset should not be skewed towards any
tuples. Notice that taking a uniform sample of the
input does not imply that we will obtain a uni-
form sample of the output, e.g., the join opera-
tion.

3. Output delay. The difference between the current
timestamp and the tuple’s timestamp represents
the delay imposed by the system in the tuple pro-
cessing. A query processor minimizes the output
delay to achieve a better response time.

5. Design of an Hippocratic Data

Stream Management System

Figure 3 illustrates the basic components that, in
our view, should be part of an HDSMS. We introduce
several components that are specific to privacy, such
as Security and Privacy Preferences, Data Collection
Manager, Data Retention Manager, and View Manager.
Each of these components plays a role in assuring the
compliance to privacy principles. These components in-
teract with other components, that are typically part
of stream data management systems, such as Stream
Registration Unit, Summary Manager, and Query Ad-
mission Control to ensure full system security. The ba-
sic components of an HDSMS are sandwiched between
two layers of the Security Manager (input stream and

output stream security managers) that provide secu-
rity services. Such services include encryption, decryp-
tion, authentication, and non-repudiation. Notice that
integrity is usually not assured for data streams due to
the frequent and natural data loss over the communi-
cation medium in the streaming environment. The Se-
curity Manager is responsible to achieve the required
security services, i.e, achieve the safety principle.

The stream owner communicates with the system
through two major interfaces: the Stream Registration
Unit and the Stream Manager. The Stream Registra-
tion Unit accepts Stream Definition Language (SDL)
statements defining the schema of a new stream along
with the privacy preferences of the stream owner. The
stream owner is allowed to define a view according to
which each user accesses the stream, as discussed in
Section 4.1. Notice that the SDL statements may be
changing continuously to form a stream of preferences
that controls the access to the associated stream data
(as described in Section 4.2). The registration of a new
stream places no load on the system because a stream
is not physically read into the system unless it has an
associated query. The load is imposed at the time of
query registration not at the time of stream registra-
tion. Hence, the system grants all the stream registra-
tion requests unless the stream owner requires secu-
rity services that are not provided by the system. The
Stream Registration Unit acquires the purpose of the
stream data and the consent of the stream owner be-
fore a stream is successfully registered in the system.

The Stream Manager physically receives the input
stream tuples and prepares it for further processing in-
side the system. It consists of two basic components:
the Buffer Manager and the Summary Manager. The
Buffer Manager accepts the newly incoming stream tu-
ples and maintains them in a raw representation while
the Summary Manager builds stream intermediate rep-
resentations of the streams that are suitable for query
processing. The Stream Manager should be eager to
push the incoming tuples into the systems as soon as
they arrive to fulfill the accuracy principle. Also, when
the system load is high, the Stream Manager applies
load shedding techniques to relieve the system from the
burden of stream bursts arriving at high rates. How-
ever, load shedding techniques provide the system with
a uniform sample of the input stream and abide to the
faithful representation principle.

The system accepts a user’s query expressed accord-
ing to the Stream Manipulation Language (SML), e.g.,
an SQL query. The Query Admission Control Unit ac-
cepts, rejects, or negotiates a query with the query
owner based on (1) the access privileges of the query
owner to limit access to confidential data and based on



Privacy Controller

Security

and Privacy
Preferences

\ 4
Query Admission > Query
Stream < ) Stream < - <
Q_ner\sm_ — Registration Unit Control Unit SM L QueryQN—ner
_— = Data Collection
o M anager < - A
Q &
g § 5
(] v ¢ s
i Stream M anager =
s Data Retention 5
(% M anager 3%
Buffer

% M anager ‘ %
&3 — A &3
5 | |« > s
= v Query 8

:l ; Processor Output Stream

Input Stream o — View M anager —> p
Summary
M anager v
A
v
Summary
Pool

Figure 3. A preliminary architectural design for a Hippocratic data stream management system

(2) the current system load to guarantee a minimum tention principle).
QoS for the new query as well as the existing queries. ) ‘
The Query Admission Control Unit fulfills both the lim- Notice that the Data Collection Manager accepts feed-

back from the Query Processor to further prune the
collection of data. The Data Collection Manager uses
the feedback of the Query Processor to push global fil-
ters as early as possible at the system’s input buffers
(as described in Section 4.5).

The Data Retention Manager is responsible for delet-
ing the user’s data from the system once they expire
(i.e., get outside the largest sliding window of inter-

ited use and the minimum QoS principles. Once a query
is accepted, it is dispatched to the query processor to
compete for system resources.

The Data Collection Manager maintains both the
privacy preferences of the stream owner and the ac-
cess requirements of admitted queries. The Data Col-
lection Manager has the following three basic function-

alities:
est) or once they fulfill their associated purpose. Based
1. Tt controls the Stream Manger to limit the data col- on the maintained security and privacy preferences,
lection to the attributes that are of interest to out- the Data Collection Manager informs the Data Reten-
standing queries (limited collection principle). tion Manager of the expiration time of each data item.

Whereas the Query Processor informs the Data Reten-

tion Manager of any data items that have already ful-

filled its associated purpose. Accordingly, the Data Re-

tention Manager removes these data items from the

3. It informs the Retention Manager of how long to system input buffers, the summaries and the opera-
maintain each piece of collected data (limited re- tor queues of query plans.

2. It contacts the View Manger to establish a view for
each user or query to hide confidential data from
unauthorized entities (limited use principle).



The View Manager is interposed between the input
streams and the Query Processor to enforce the privacy
preferences of the stream owner. Instead of materializ-
ing each view, the View Manager shares the execution
of multiple queries on the same buffers (as described in
Section 4.1). The View Manager is responsible for both
the stream’s raw input data and its maintained sum-
maries. Notice that the stream owner is granted a view
with no limited access over his own stream to follow
the openness principle.

The Query Processor executes the registered contin-
uous queries over their associated views and streams
the result out to the query owner. The stream input
data are pushed into the Query Processor by the View
Manager. Each data item propagtes up the query plan
passing through various query plan operators until the
result is obtained at the operator on top of the query
plan. The Query Processor records its activities in au-
dit trails that are available for the stream owner to
check the compliance of the system to the Hippocratic
principles.

6. Related Work

In this section, we survey related work in the con-
text of data streams through the following two major
guidelines:

(1) We survey several prototypes for data stream
management systems that are developed by various re-
search groups. (2) We highlight two research directions
that provide security and preserve the privacy of data
streams.

Prototype data stream systems have been developed
to address the challenges of streaming environments.
Although these prototypes do not address data pri-
vacy as their primary concern, they provide the basic
foundation for continuous query processing over data
streams [10]. Stanford STREAM [9, 25] focuses on re-
source management in the context of data stream pro-
cessing. The AURORA project [1] optimizes for cer-
tain QoS measures. Telegraph [13] achieves adaptiv-
ity in query execution by dynamically changing the or-
der of query operators during execution. The Niagara
project [16] performs group optimizations over sets of
continuous queries. Gigascope [17] is a data stream sys-
tem that is developed at AT&T to process streams
of network traffic. The Fjord project [24] proposes a
framework for query execution plans over data streams.
The COUGAR system [11] introduces a new data type
for sensors that facilitates query processing over sensor
data. Nile [23] is a research prototype that is currently
being developed at Purdue University. Nile extends re-

lational database management systems with the data
streaming functionalities.

Like for traditional databases, the work carried out
so far to assure privacy of data streams can be classi-
fied into two directions: (1) maintaining statistics over
data streams and (2) developing security mechanisms
for data stream processing. We discuss each direction
briefly in the following sections.

6.1. Maintaining Statistics Data

Streams

over

To preserve the privacy of individual stream data
items, queries are allowed to access only statistical in-
formation over a window of the stream [18, 31]. In ad-
dition to privacy requirements, maintaining statistics
over data streams was initiated by the need to repre-
sent the stream data items using low memory require-
ments and to provide fast approximate answers using
a smaller subset of the data. Stream data are sum-
marized incrementally as data arrive into the system.
Then, queries are performed on top of the summaries
to extract various statistics. Although statistics pro-
vide an insight of the stream’s behavior, they blur the
sensitive data of individual data items.

Sampling is one of the solutions to provide a smaller
subset of data that faithfully represent the original
stream. Sampling with a reservoir techniques are tuned
for data stream processing in [8]. Various stream oper-
ations, e.g., the join operation [3, 15] and the group-
by operation [2], are processed on top of a random
sample of the original stream. Sketches [6] are an-
other form of data summarization. Some sketching
techniques are developed to capture the stream’s most
frequent items [14]. The most frequent item list can
represent the stream data for some special distribu-
tions, e.g., the Zipfian distribution. Several techniques
are proposed to build approximate histograms [21, 26]
and wavelets [12, 30] in a single pass or in few passes to
fit in the online processing paradigm of data streams.

6.2. Security Mechanisms for Data Stream
Processing

To the best of our knowledge, there is very little
work that addresses the security for data stream sys-
tems and to date only a preliminary analysis of se-
curity issues has been undertaken [5]. Although the
main research focus is directed to the performance is-
sues of stream query processing, data stream systems
can borrow many security techniques from traditional
database systems. For example, encryption and decryp-
tion techniques are applied in the streaming environ-



ment to ensure confidentiality whenever sensitive data
is required to be protected. In contrast to block ciphers,
stream ciphers fit better in the streaming environment.
A preliminary approach based on such type of cipher
has been recently proposed to provide a fault toler-
ant efficient encryption mechanism for stream data [5].
However, such a mechanism alone is not enough to pro-
vide a comprehensive solution to the problem of secur-
ing stream data.

7. Conclusions and Future Work

Hippocratic databases extend the functionalities of
traditional databases with privacy-preserving capabili-
ties. Similarly, privacy preserving data stream systems
are expected to be the next step for the data stream-
ing paradigm. In this paper, we presented a visionary
architectural design for HDSMS. We aimed at allowing
privacy preserving capabilities to go hand-in-hand with
the efficient execution of continuous queries over data
streams. We highlighted some applications that bene-
fit from Hippocratic data stream management systems.
In our design, we adhered to the ten principles of Hip-
pocratic databases and extended these principles with
two more principles that are crucial to data streams. In
this paper, we identified the major challenges one has
to address in the development of an HDSMS and we be-
lieve that these challenges will trigger many directions
for future research. The realization of our design into
an initial prototype for a Hippocratic data stream sys-
tem will further provide additional research issues.
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